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Chapter 1

Introduction

by Olaf Kolditz, Uwe-Jens Görke, Hua Shao, and Wenqing Wang

Coupled process modelling has been considered in the various engineering prob-
lems and geo-scientific applications since the computation method was intro-
duced for problems of soil consolidation and dam construction, and oil/gas
filed exploration in early 1970. However, substantial progress in experimen-
tal and theoretical studies regarding the fully coupled effects of temperature,
hydraulics and mechanics, as well as chemistry, in fractured porous media was
just made in the last two decades due mainly to demands from the perfor-
mance and safety assessment of high-level nuclear waste repositories. Numer-
ical methods and computer codes have been developed successfully within the
international DECOVALEX project (1992–2011). Meanwhile a wider range of
applications associated with THMC coupled problems such as geothermal reser-
voir engineering, CO2-storage, construction of underground opening etc. can be
found in the different international conferences, e.g. GeoProc (www.mech.uwa.
edu.au/research/geoproc), ComGeo (www.com-geo.org/).

For a long-term performance and safety assessment of a nuclear waste reposi-
tory in a deep geological formation, an important issue is to guarantee the iso-
lation of an underground repository. To answer this question, solute transport
processes under the coupled conditions involving mechanical stability; thermal
loading from the high-level waste, and chemistry in the groundwater should be
predicted numerically. Also, for construction planning of such a complex and
the implementation of experimental data gained from in situ tests, a multiple
process coupled code is required.

Through the rapid development of computer technology, complicated geosci-
entific and geotechnical problems can be analysed in a coupled manner using

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 1, © Springer-Verlag Berlin Heidelberg 2012
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modern numerical codes. However, the understanding of the complicated cou-
pled processes based on the experimental data available and implementation of
the developed algorithm into the numerical codes are major challenge for scien-
tists, which require interdisciplinary cooperation and interactive procedure.

Quality management is nowadays a standard tool for production and develop-
ment to ensure the high quality of a produced result. A numerical code dealing
with the coupled THMC process is a highly complicated software product since
the different processes have different characteristic features, e.g. time and spa-
tial scales, nonlinearities, and interaction degree etc. To maintain a high quality
of the developed code, benchmark testing is therefore necessary, especially in
the case that scientists from different disciplines and organisations are working
on the same code. Therefore, code verification and validation of selected test
case are documented during the code development, and finally a benchmarking
book for the code developer (DBB) is produced and quality ensured.

1.1 Scope of This Book

The intention of this book is multifold and can be summarised as the following:

• Outline the theoretical background of THMC processes in porous media
for applications in geotechnics and hydrology (Part I),

• Provide collected test cases which can be used for benchmarking the nu-
merical code development for single (Part II) as well as coupled processes
(Part III),

• Help to develop and set-up applications (www.opengeosys.net and con-
nected OpenGeoSys development platform available through the internet,
see also Appendix for more details)

1.2 Application Areas

1.2.1 Geotechnics

The coupling phenomena of thermal (T), hydraulic (H), and mechanical (M)
processes are important for the analysis of deep geosystems under high temper-
ature, pressure and stress conditions. Application areas of THM coupled models
are e.g. geothermal energy utilization, nuclear waste disposal, and carbon diox-
ide storage in the deep geological formation.

The following slides illustrate that the understanding of THM processes, includ-
ing chemical reactions (C process) is important to a large variety of geotechnical
and geothermal applications. The physical basics are exactly the same for these
applications. Different is simply

• the geological environment and different rock types, i.e. crystalline rocks,
volcanic rocks, sandstones, clay, bentonite, ...
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Figure 1.1: Tunnel system (Visualization by B. Zehner)

• the geofluids, i.e. water, brines, vapour, methane, carbon dioxide ...
• the thermodynamic conditions, i.e. temperature, stress, pressure, salinity,
...

There are several concepts concerning host rock for the disposal of hazardous
waste in deep geological media, i.e. crystalline, salt, sediment, and volcanic for-
mations. Different concepts use different buffer systems as geotechnical barriers
for the waste isolation, i.e. crushed salt, bentonite, and bentonite/sand mixture.
THM/C coupled modelling is required for the long-term analysis of possible pro-
cesses which might result in a release of contaminants from the repository [1]. In
that case it is important to know, how long it will take until the contaminants
return into the biosphere (Fig. 1.1).

Figure 1.2 illustrates the application area: Carbon Capture Storage (CCS). The
idea is to capture the CO2 from the power plants, liquefy it and inject it into the
subsurface for long-term storage. Two basic concepts for appropriate geological
systems are under proof now: depleted gas reservoirs and deep saline aquifers.
After many years of operation many former gas reservoirs are depleted. These
reservoirs are in an underpressurized status and can take up large volumes of
fluids. Keeping the reservoir underpressurized and the impervious cap rocks are
important considerations for storage. THM/C modelling is required in order to
calculate the possible fluid storage capacity and to better understand the highly
coupled processes in the CO2 injection area as well as their consequences for
the storage concept [2].

Figure 1.3 depicts the application area: Geothermal energy, which is one of
the alternative future energy resources under consideration. So-called shallow
and deep geothermal systems are distinguished. Shallow systems are already
commercially used e.g. for heating purposes. Deep geothermal reservoirs can
be used for electric power production as high temperatures up to 200 C can
be produced. THM/C modeling is required to design these geothermal power
plants, e.g. in order to optimize production efficiency and reservoir lifetime.
The significant cooling of the reservoir due to fluid reinjection gives rise to
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Figure 1.2: Subsurface reservoir for CO2 storage

Figure 1.3: Simulated temperature field of water reinjection

thermo-mechanical effects which need to be controlled in order to avoid reservoir
damage [3].

The second application area for coupled process simulation is hydrology. River
basins or catchments are also subject to THMC coupled processes, but include
however a completely different range of thermodynamic conditions than deep
geological systems. Hydrological processes are very complex to describe as they
vary highly in time and space. The evaluation of groundwater recharge is vital



www.manaraa.com

1.2 APPLICATION AREAS 5

Figure 1.4: Groundwater model for the Wadi Kafrein catchment in Jordan

Figure 1.5: Nankou groundwater quality model

to a sustainable water resources management (so called safe yield). To this
purpose, i.e. the understanding of small scale phenomena such as root / soil
water interaction is of tremendous significance [4]. Typically groundwater mod-
els are used for management purposes particularly in semi-arid areas such as
the Jordan Valley in the Middle East [5] (Fig. 1.4).

Because water availability is an important issue in semi-arid and arid regions,
groundwater quality deterioration is a critical concernin many urban areas of
the world. Figure 1.5 shows as an example part of a groundwater quality model



www.manaraa.com

6 CHAPTER 1 INTRODUCTION

Figure 1.6: Optimizing energy storage concepts by modelling (OGS simulation
by Wenqing Wang), [7]

prepared for the Nankou basin in the greater Beijing area. The idea of this
modelling project is to identify possible sources of nitrate contamination orig-
inating from intense agriculture and fertilizer production [6]. Land use and
climate changes will impact the availability and quality of water resources to
a large degree in the future. The modelling should help to develop scenarios
for improving the groundwater quality in the long term. Areas subject to large
groundwater extraction are also subject to severe land subsidence.

A very recent research area for THMC modelling has become energy storage.
The economy and feasibility of renewable energy sources will depend a large
degree on efficient energy storage systems. Figure 1.6 shows the numerical simu-
lation of flow and heat distribution in a solid thermal energy storage block, which
will be used to store solar energy collected during the daytime for use at night
(so called solar-thermics). The long term stability and efficiency of those energy
storage devices can be optimized using THMC modelling (i.e. solving the inverse
geothermal problem). In addition to thermal storage, thermo-chemical concepts
are under development, i.e. storing thermal energy by triggering endothermic
reactions and gaining thermal energy back on demand with the reverse reaction
(exothermic).
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Chapter 2

Theory

by Olaf Kolditz, Norbert Böttcher, and Uwe-Jens Görke

Concerning the theoretical background of flow, transport, deformation, and
reaction processes in porous media, there is a considerable amount of mono-
graphic literature available [8–15]. The idea of this chapter is to provide a
concise, brief-as-possible description (compendium-like) of governing equations
for thermo-hydro-mechanical / chemical [THM/C] processes in porous media.
We will point to literature references rather than giving detailed derivations of
the governing equations. This part is the theoretical basis for all benchmarks
and examples found in Part II and III of this book. We will refer to this part
in the examples sections where the working equations are briefly repeated.

From the mechanical point of view we consider non-isothermal flow of multiple
fluid phases (compressible and incompressible fluids) in a deformable thermo-
poro-elastic porous medium based on Biot’s consolidation concept. A short
introduction to continuum mechanics is given in Sect. 2.1, followed by basic
conservations principles (Sect. 2.1.4) as well as an introduction to theory of
porous medium (Sect. 2.2). The followings steps are conducted to derive the
general field equations:

• Macroscopic balance equations for mass, momentum and energy conser-
vation of porous media (Sect. 2.3),

• Constitutive relationships for non-isothermal multiphase flow and defor-
mation processes in porous media, (Sects. 2.4 and 2.5),

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 2, © Springer-Verlag Berlin Heidelberg 2012
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• Applying the constitutive relationships and introducing physically based
simplifications to the balance equations for the derivation of the general
field equations. (Parts II and III).

2.1 Continuum Mechanics

The basic idea of continuum mechanics is that the evolution of a physical system
is completely determined by conservation laws, i.e. basic properties such as
mass, momentum, and energy are conserved during the considered process at all
times. Any physical system can be completely determined by these conservation
properties. In contrast, other quantities such as pressure or entropy do not
obey conservation laws. The only additional information concerned are the
consistencies of the material (e.g. fluids, solids, porous medium) in the form of
constitutive laws.

The concept of conservation means that the variation of a conservation quan-
tity within a given control volume is due to the net effect of internal sources
and of the amount of the quantity which is crossing the boundary surface of
the considered volume—fluxes. Sources and fluxes are, in general, dependent
on space-time coordinates as well as mechanical and thermodynamic factors.
Fluxes result from two contributions: first due to advective transport by fluid
motion and second due to diffusion/dispersion processes. Diffusion is always
present even when the fluid is at rest. Diffusion is the tendency towards equi-
librium or homogeneity of a physical system.

The mechanical description of coupled thermo-hydro-mechanical (THM) pro-
cesses in porous media is closely associated with the deformation of the solid
phase, and the interaction of deformation and flow processes. Each solid mate-
rial body (including the solid phase of a porous medium) can exhibit different
kinds of motion (Sect. 2.1.2):

• rigid body motion (translation or rotation of the body without changing
its volume or shape), and

• deformation (local relative change of lengths and/or angles referred to
neighboring particles, resulting in variations of the shape and/or volume
of the material body under consideration).

Deformation processes of a porous medium interact with hydraulic processes of
the coupled physical system particularly in the following ways:

• effects on the stress state within the solid phase due to pore pressure
evolution (with possible risk of rock failure), and

• variations of the pore size distribution due to the deformation of the solid
skeleton, which affect the hydraulic properties, and thus, have an impact
on the flow processes in the porous medium.
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The analysis of deformation processes considered as a mechanical response of
the material body to the action of applied external forces is one of the objects of
mechanics (micromechanics, continuum mechanics). Porous media distinguish
themselves by a sophisticated complex microstructure, whose realistic simu-
lation is extremely challenging, and from a practical point of view generally
not efficient. Therefore, continuum mechanics (which is based on the assump-
tion that matter is continuously distributed in space) provides the preferred
approaches for the mathematical modeling of deformation processes in porous
media. Appropriate models are not based on a physical characterization of
the real microstructure, but consider their effects on the physical behavior in a
phenomenological manner (Sect. 2.2).

General statements of mechanics, which are independent of the specific material
under consideration, refer to the kinematics of motion (shortly described in a
following section) and the balance relations (Sect. 2.3). By contrast, individ-
ual material dependent statements refer to the constitutive relations (Sect. 2.5).
Both the balance relations as well as the constitutive relations comprise a math-
ematically closed system of equations to solve initial-boundary value problems
of mechanics.

Figure 2.1: Two basic descriptions of motion—Langrangian (top) and Eulerian
principles (bottom), adopted from [16]
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2.1.1 Lagrangian and Eulerian Principles

In the Lagrangian formulation we follow the quantity along a pathline, i.e.
following particles (Fig. 2.1, top). In the Eulerian formulation of motion we
consider variations of the quantity with respect to a fixed control volume at
fixed places (Fig. 2.1, bottom).

A pathline is a curve along which a fixed particle of a continuum moves during
a sequence of time. Pathline is Lagrangian concept of motion. A streamline is a
curve along which a sequence of particles moves at a given time. By definition,
the tangent to a streamline coincides with the velocity vector at that point.
Streamline is Eulerian concept of motion. Note, for unsteady flow the streamline
may vary from one instant to the next, whereas for steady flow streamlines
remain unchanged with time. For steady motion both pathlines and streamlines
coincide. Any particle will remain on a given streamline as time proceeds.
Additional terms associated with kinematics of continua are the following (see
also Sect. 2.1.2).

2.1.2 Kinematics of Continua

Kinematics analyzes the geometry of motion in general and of deformation pro-
cesses in particular. It is based on the assumption that a material (physical)
body B, which represents a set of elements P called material points (aka: mate-
rial elements, particles), at each moment of time can be uniquely defined with
certain parts (usually different if motion occurs) of space. Assigning the ma-
terial body specificially to its image in the three-dimensional Euclidean space
of physical observations, the location of each material point at each time can
be identified with the position vector x(t) in a physically well-founded manner.
Consequently, the position vector can be represented by its Cartesian coordi-
nates x1, x2, x3. In order to characterize the motion of a material body uniquely
with respect to a reference state, the domain in space occupied by the material
body at an arbitrarily selected time t0 is of emphasized significance. Usually in
porous media mechanics, an appropriately chosen initial state of the solid skele-
ton is chosen as the reference state. The position vectors to define the positions
of the material points at t0 are denoted as X.

One of the primary variables within the context of numerical simulation of
coupled THM processes is the displacement vector u of the solid phase. The
displacement vector is a commonly used kinematic variable to describe the mo-
tion (rigid body motion and/or deformation) of a solid material, and quantifies
the change in the position of a given material point (cf. Fig. 2.2).

u(X, t) = x(X, t) − X (2.1)

In other words: the displacement vector connects the current position x of a
material point which under the impact of external forces has been moved, and
was located at time t0 at the position X. Because, in general, the displacement
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Figure 2.2: Definition of the displacement vector as the difference of the position
vectors x and X of a material point (particle) of the body under
consideration at various time t (current time) and t0 [17]

vector will vary locally and temporally, u(X, t) = u(X(x, t), t) = ū(x, t) ≡ u
represents a vector field as function of space and time.

For the possible comparison of the response of material bodies (which are com-
posed of different materials and/or have a different geometry) to the impact of
external forces, it is not reasonable to deal with the physically obvious variables
displacement and force, but rather to introduce relative physical variables like
strain and stress measures. Strain measures represent second-order kinematic
tensor variables characterizing the local deformation processes, which deviate
from the rigid body motion of a material body.

Based on the definition of the displacement gradient

∇ū(x, t) =
∂ui
∂xj

ei ⊗ ej (2.2)

with the orthonormal system of Cartesian base vectors ei (i = 1, 2, 3), the strain
tensor ε(x, t) in the case of small (infinitesimal) deformations is established as
the symmetric part of the displacement gradient.

ε(x, t) =
1

2

(
∇ū(x, t) + (∇ū(x, t))

T
)

(2.3)

The matrix of the coefficients of the strain tensor consists of so-called normal
components

εii =
∂ui
∂xi

(2.4)

and shear components.

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(i �= j) (2.5)
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Figure 2.3: Extension (normal strain) of a material line element dX= |dX|e [17]

Figure 2.4: Shear (shear strain) of two material line elements dX1 = |dX1|e1 and
dX2 = |dX2|e2, which are orthogonal in the undeformed state [17]

For special cases it can be easily shown that normal strain is geometrically
interpreted as elongation of material line elements (Fig. 2.3), and shear strain
represents the change of the angle between two material line elements, which
initially were perpendicular to each other (Fig. 2.4).

For the analysis of certain deformation processes it is reasonable to consider local
volume changes and shape changes separately. Within this context, the strain
tensor can be additively split into two parts: a volumetric εv and a so-called
deviatoric (volume-preserving) εd one.

ε = εd + εv (2.6)

The individual partial strain tensors are defined as follows:

εv =
1

3
tr(ε) I =

1

3
(ε11 + ε22 + ε33) I (2.7)

εd = ε − εv (2.8)

Based on the definition

vs(x, t) =
.
ū(x, t) (2.9)
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of the velocity of material points of the solid skeleton, the strain rate tensor

ε̇(x, t) = d(x, t) =
1

2

(
∇vs(x, t) + (∇vs(x, t))T

)
(2.10)

with its coefficients

dij =
1

2

(
∂vsi
∂xj

+
∂vsj
∂xi

)
(2.11)

can be defined, which is necessary for the investigation of deformation processes
in the case of rate-dependent material behavior.

In the case of small strains, which was assumed here, the relation between the
strain tensor and the displacement vector is a linear one (see (2.3)). Considering
large strains, the definition of appropriate strain measures requires more sophis-
ticated reflections about the kinematics of motion. As a result, different strain
tensors can be obtained representing non-linear functions of the displacement
vector.

2.1.3 Stress Tensor

The momentum, as well as the moment of momentum, of a material body are
affected by external forces acting on it, which represent the mechanical effect of
the surroundings (cf. Fig. 2.5). Summarizing all local forces, the resultant force
F can be defined.

F =

∫

∂B

t da +

∫

B
f dm =

∫

Γ

t(x, t,n) dΓ +

∫

Ω

fv(x, t) �(x, t) dΩ (2.12)

Generally, the material body under consideration bears forces distributed over
its surface with the surface force density t (traction, Cauchy stress vector), and
forces distributed over the volume of the material body with the volume force

Figure 2.5: External volume and surface forces acting on infinitesimal geomet-
rical elements of a material body [17]
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density (mass distributed specific volume force) fv. As mentioned above, only
gravity �g should be considered as specific volume force.

The traction vector t(x, t,n) is considered to be a function of the location of
its action on the surface, a function of time and of the normal vector, which
characterizes the orientation of the surface element dΓ . Assuming a linear
relation between the traction and the normal vector (Cauchy’s theorem), the
stress measure σ (x, t) (Cauchy stress tensor) is defined as a link between surface
traction and surface orientation.

t(x, t,n) = σ (x, t)n ⇒ σ = σij ei ⊗ ej (2.13)

Based on Cauchy’s theorem, the differential surface force df0 acting on a surface
element can be obtained.

df0 = t dΓ = (σ n) dΓ = σ (n dΓ) = σ dΓ (2.14)

For certain cases it is reasonable to use the so-called Kirchhoff stress tensor τ ,
a weighted Cauchy stress measure, instead of the Cauchy stress tensor itself.

τ =
�0
�

σ (2.15)

The second-order stress tensor characterizes the local internal load state refer-
ring to a material point of the body under consideration. Generally, it can be
defined by three stress vectors acting on three faces of an infinitesimal tetrahe-
dron, which are perpendicular to each other when analyzing the equilibrium of
forces for this domain. The coefficients of the resulting stress tensor are denoted
by two indices—the first indicates the direction of the normal vector of the face
under consideration, the second one the direction of the stress coefficient (see
Fig. 2.6 for the three-dimensional case).

Figure 2.6: Coefficients of the stress tensor acting on a small hexahedral ele-
ment [16]
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The sign convention, usually applied in continuum mechanics, implies positive
stress coefficients coinciding with the directions of the axes of coordinates at
faces and with normal vectors also coinciding with the directions of the axes of
coordinates. Consequently, tensile stress coefficients are positive, compressive
stresses negative. Positive stress coefficients on opposite faces are oppositely
directed (but of equal absolute value). The matrix of the coefficients of the
(Kirchhoff) stress tensor is composed as follows:

τij =

⎛
⎜⎝

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞
⎟⎠ (2.16)

Analogous to the strain tensor, the coefficients τxx, τyy, τzz are called normal
stresses, the coefficients τij (i �= j) shear stresses with τij = τji (symmetry of
the stress tensor, which results from the balance of moment of momentum).

In the special uniaxial stress case only at one face of a volume element a normal
stress occurs, whereas all the other faces are stress-free. Consequently, the
stress coefficient is calculated as the force acting on the face under consideration
divided by its area.

2.1.4 Conservation Principles

Based on the kinematical foundation (Sect. 2.1.2) we formulate the general con-
servation principle of continuum mechanics for both Eulerian and Lagrangian
points of view (Sect. 2.1.1). The amount of a (conservation) quantity in a defined
volume Ω is given by

Ψ =

∫

Ω

ψdΩ(t) (2.17)

where Ψ is an extensive conservation quantity (i.e. mass, momentum, energy)
and ψ is the corresponding intensive conservation quantity such as mass den-
sity ρ, momentum density ρv or energy density e (see Table 2.1).

The balance equations for mass, momentum and energy conservation can be
derived based on two fundamental principles, i.e. Eulerian and Lagrangian
frameworks (e.g. [16]) Both conservation principles are related by two different
forms of derivatives

dψ

dt
=
∂ψ

∂t
+ v · ∇ψ (2.18)
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Table 2.1: Conservation quantities

Extensive quantity Symbol Intensive quantity Symbol

Mass M ,Mk Mass density ρ,ρk
Linear momentum m Linear momentum density ρv
Energy E Energy density e = ρi+ 1

2ρv
2

the total (or material) d and partial derivatives ∂, respectively. The general
integral balance equation is given by

d

dt

∫

Ω

ψ dΩ =

∫

Ω

(
∂ψ

∂t
+∇ ·Φ

)
dΩ =

∫

Ω

qψdΩ (2.19)

where ψ is a general conservation quantity, Φ is the total flux of ψ, and Q is a
source/sink term for ψ. The corresponding extensive and intensive conservation
quantities are summarized in Table 2.1.

The total flux Φψ of a quantity ψ is defined as

Φψ = vEψ (2.20)

where vE is a mean particle velocity. Physically Φψ represents the quantity
of ψ passing through a unit area of the continuum, collinear with vE , per unit
time with respect to a fixed coordinate system, i.e. Eulerian point of view.

For the case of a multi-component continuum let v denote the mass-weighted
velocity describing a more ordered motion of the particles of a fluid element.
The total flux can be written as

Φψ = vEψ = vψ︸︷︷︸
ΦψA

+(vE − v)ψ︸ ︷︷ ︸
ΦψD

(2.21)

and, therefore, decomposed into two parts: an advective flux Φψ
A and a diffusive

flux Φψ
D relative to the mass-weighted velocity:

• Advective flux of quantity ψ

Φψ
A = vψ (2.22)

• Diffusive flux of quantity ψ (Fick’s law)

Φψ
D = −α∇ψ (2.23)
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where α is a diffusivity coefficient. The negative sign indicates that diffusive
flux is positive in the direction of a negative gradient.

If the conservation quantity is a vector (e.g. linear momentum) then the flux
becomes a tensor and the source term a vector (e.g. body forces):

• Advective flux of vector quantity ψ

Φψ
A = v : ψ =

[
vx vy vz

]
⎡
⎣
ψx
ψy
ψz

⎤
⎦ =

∣∣∣∣∣∣
vxψx vxψy vxψz
vyψx vyψy vyψz
vzψx vzψy vzψz

∣∣∣∣∣∣
(2.24)

• Diffusive flux of vector quantity ψ

Φψ
D = −ρ∇ : ψ = −α

∣∣∣∣∣∣∣

∂ψx
∂x

∂ψy
∂y

∂ψz
∂z

∂ψx
∂x

∂ψy
∂y

∂ψz
∂z

∂ψx
∂x

∂ψy
∂y

∂ψz
∂z

∣∣∣∣∣∣∣
(2.25)

When substituting the flux definition into the general balance equation (2.19),
we yield the so-called transport equation

d

dt

∫

Ω

ψ dΩ =

∫

Ω

∂ψ

∂t
dΩ

︸ ︷︷ ︸
1

+

∫

Ω

∇ · (vψ) dΩ
︸ ︷︷ ︸

2

−
∫

Ω

∇ · (α∇ψ) dΩ
︸ ︷︷ ︸

3

=

∫

Ω

qψ

︸ ︷︷ ︸
4

(2.26)

with the following terms:

1. Rate of increase of ψ within a fluid element

2. Net rate of ψ due to flux out of the fluid element

3. Rate of increase / decrease of ψ due to diffusion

4. Rate of increase / decrease of ψ due to sources

2.2 Porous Medium

Soil and rock can both be considered a multiphase medium consisting of a solid
phase (solid matrix) and of one or more fluid phases (gas and liquids), which
occupy the void space (Fig. 2.8). Fluids are immiscible, if a sharp interface is
maintained between them. In general, a phase is defined as part of a continuum,
which is characterized by distinct material properties and by a well-defined
set of thermodynamic state variables. State variables describe the physical
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behaviour at all points of the phase. They must vary continuously within the
considered phase of a continuum. Phases are separated from each other by
surfaces referred to as interphase boundaries. Transport of components may
occur within a phase and/or across interphase boundaries. Those interphasic
exchange processes between adjacent phases can result from diffusive and/or
advective mechanisms.

In fact, it is impossible to describe the complex geometry of the solid matrix
and the topology of the void space at the microscopic level, i.e. the topology
of the pore space will never be known in detail. As a consequence, boundary
conditions for a mathematical model cannot be stated at this scale, since they
are not known at the microscopic level. Moreover, it will be extremely difficult
to measure values of state variables at each point within a phase in order to
observe processes, to calibrate and to verify any model. Finally, the complete
formulation and resolution of balance equations at the microscopic level is im-
possible and may not be reasonable. Therefore, it is necessary to transform
the problem from a microscopic scale to a macroscopic level. Starting from the
microscopic balance equations for extensive quantities (masses, momentum, en-
ergy), this procedure is the subject of the theory of the porous medium [8–15]
The entire problem is rewritten in terms of averages of microscopic quantities,
which have measurable values. The resulting macroscopic model is referred to
as the continuum approach. This conceptual model implies that a real system
is replaced by a number of overlapping continua representing the corresponding
phases. It is assumed that each phase, occupying a certain part of the porous
domain, is regarded as a continuum. These individual phases interact with each
other at any place within the entire domain, because they are present at each
point within the porous medium, i.e. all phases are completely mixed.

Ω0 =
∑
α

Ωα (2.27)

In addition to the porous medium approach, there exist different types of struc-
tural models for fractured rocks, which characterize the degree of inhomogeneity:
the fractured medium and the fractured porous medium. The term fractured
medium means that only the fractures are important for the considered process,
so blocks surrounded by the fractures may be neglected in the model. The term
fractured porous medium means that both the fracture system and the porous
matrix are significant for the considered process. The domain of a fractured
porous medium consists of two subdomains, representing heterogeneities at dif-
ferent scales, i.e. the diameter of pores in the matrix and the characteristic
length of the fractures.

Appropriate averaging rules must be defined in order to realize the above de-
scribed transformation from a microscopic to a macroscopic level. For this pur-
pose, a well-defined sample size of an averaging volume must be found, which
is referred to as the representative elementary volume (abbreviated REV). On
the one hand, this averaging unit has to be sufficiently large, so that the in-
fluence of microscopic inhomogeneity on the values of averaged (macroscopic)
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quantities will vanish, i.e. they become independent of size, shape, and orienta-
tion of the REV. On the other hand, the REV must be small enough to reflect
the macroscopic heterogeneity. In particular, the REV must be much smaller
than the domain of interest, which may vary in size for a flow or a transport
problem, respectively. From the mathematical point of view, the macroscopic
(averaged) quantities must be continuous and differentiable functions (in space
and in time), so that solutions of the governing differential balance equations
can be determined. Finally, the continuum approach cannot be employed un-
less a common range of a REV can be selected for all material properties (e.g.
porosity, permeability, dispersivity) as well as for all relevant state variables.
This requirement is important with respect to the different conceptual models
for fractured rock, which are introduced in the following.

2.2.1 Macroscopic Equations

As stated above, it is impossible to describe the complex geometry of the solid
matrix and the topology of the void space at the microscopic level, i.e. the
topology of the pore space will never be known in detail. Therefore, a statistical
approach is used for the derivation of balance equations at a macroscopic level.
The physical property of a porous medium is decomposed in phase-related mean
values ψα and local fluctuations ψ′α.

ψα = ψα + ψ′α (2.28)

An appropriate averaging volume is called the Representative Elementary Vol-
ume (REV) (Fig. 2.7).

Several averaging procedures can be defined [11]. As an example we consider
volumetric averaging which is also denoted as the concept of volume fractions.
The volumetric averaging operator is given by

ψα
α
=

1

εαΩ0

∫

Ω0

fαψαdΩ (2.29)

where α is the phase indicator, εα = Ωα/Ω0 is the volumetric fraction of the α
phase, Ω0 is the averaging volume (corresponding to the representative elemen-
tary volume), and fα = 1/0 (inside or outside α phase) is the phase distribution
function.

Due to the above definition the following averaging rules can be derived.

• Sum

ψα1 + ψα2 = ψα1 + ψα2 (2.30)
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Figure 2.7: Definition of the representative elementary volume (REV) [11]

• Product

ψα1 ψ
α
2 = ψα1 ψ

α
2 + ψ′

1
αψ′

2
α (2.31)

• Time derivative

εα
∂ψα

∂t
=
∂εαψα

∂t
− 1

Ω0

∫

Sαβ

ψαw · dS (2.32)

• Spatial derivative

εα∇ψα = ∇(εαψα) +
1

Ω0

∫

Sαβ

ψα · dS (2.33)

where w is the velocity of the αβ-phase interface.

To derive a phase related macroscopic balance equation, we have to average the
balance equation in differential form for a certain phase (2.19). By use of the
above averaging operators and rules the following general macroscopic balance
equation can be obtained.
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∂εαψα

∂t
= −∇ · (εαψ̄αvα + εαψ′αv′α + εαΦψα

Diff)

− 1

Ω0

∫

Sαβ

Φψα

Diff · dS− 1

Ω0

∫

Sαβ

ψα(v −w) · dS+ qψ
α

(2.34)

with the dispersive flux

Φψα

Disp
= εαψ′αv′α (2.35)

2.2.2 Theory of Mixtures

The Theory of Mixtures as one of the basic approaches to model the complex
behavior of porous media has been developed over decades (concerning basic
assumptions see e.g. [18, 19]). As the Theory of Mixtures does not incorporate
any information about the microscopic structure of the material,1 it has been
combined with the Concept of Volume Fractions by e.g. [14, 20–22]. Within
the context of this enhanced Theory of Mixtures (also known as Theory of
Porous Media), all kinematical and physical quantities can be considered at
the macroscale as local statistical averages of their values at the underlying
microscale. Concerning a detailed overview of the history of the modeling of the
behavior of multiphase multicomponent porous media, the reader is referred to
e.g. [15]. Comprehensive studies about the theoretical foundation and numerical
algorithms for the simulation of coupled problems of multiphase continua are
given in e.g. [14, 15, 23] and the quotations therein.

The individual constituents ϕα of a porous material represent the phases of
the overall aggregate or components within a phase. Below, α = s marks
one immiscible solid phase (no sorption processes are considered), and α = γ
denotes several immiscible pore fluid phases. A porous medium, however, con-
sists of multiple phases (fluids such as water, air and non-aqueous phase liquids
(NAPLs) as well as solids). Moreover, these phases can contain several chemi-
cal components which can be dissolved in liquids or adsorbed to the solid phase
(Fig. 2.8).

Within the framework of the Concept of Volume Fractions, scalar variables like
volume fractions and saturations are defined to describe the microstructure of
a porous medium in a macroscopic manner neglecting the real topology and
distribution of the pores. These variables serve as measures of local fractions of
the individual constituents. The volume fractions nα represent the ratio of the
partial volume dvα of a given constituent ϕα of a multiphase body with respect
to the overall volume dv of a representative elementary volume (REV) of the
control domain Ω under consideration. Consequently, based on the definitions

1Within the context of the Theory of Mixtures the ideal mixture of all constituents of a
multiphase medium is postulated. Consequently, the realistic modeling of the mutual inter-
actions of the constituents is difficult.
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Figure 2.8: Conceptual approach of a porous medium model, adopted from [16]

of the overall volume of the control domain

V =

∫

Ω

dv (2.36)

and the corresponding partial volumes of the individual constituents

V α =

∫

Ω

dvα with V =
∑
α

V α (2.37)

the volume fractions

nα =
dvα

dv
(2.38)

provide some information about the local volume distribution of the individual
constituents.

V α =

∫

Ω

dvα =

∫

Ω

nα dv (2.39)

One of the most characteristic media properties of a porous material is the
porosity, the local amount of fluid volume fractions.

n =
∑
γ

nγ = 1 − ns (2.40)

Since, in general, the overall medium is completely filled with matter, from
(2.37) follows the saturation condition regarding the overall aggregate.

∑
α

nα = 1 (2.41)

If multiphase flow occurs, it is more convenient for various applications to use
the (partial) fluid saturations Sγ instead of the volume fractions. These local
functions are given by

Sγ =
dvγ

dv − dvs
=
nγ

n
(2.42)
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obviously fulfilling the saturation condition regarding the pore content.

∑
γ

Sγ = 1 (2.43)

Usually, constraint conditions addressing real physical effects are formulated
to simplify complex mathematical and numerical models. Within the context
of porous media, it is reasonable in most applications to assume the (material)
incompressibility of constituents as a substantial constraint condition. The issue
of (in)compressibility of a material is closely connected to the possible temporal
evolution of its mass density.

Within the framework of the Concept of Volume Fractions, two different for-
mulations of mass density related to the constituents of a porous medium are
introduced. The so-called material (effective, realistic) density ραR is defined as
the ratio of the mass fraction dmα of the given individual constituent ϕα with
respect to its partial volume fraction.

ραR =
dmα

dvα
(2.44)

In contrast, the so-called partial (global, bulk) density is given by the ratio of
the mass fraction of the constituent under consideration with respect to the
volume fraction of the overall aggregate.

ρα =
dmα

dv
(2.45)

Based on the definition of the volume fractions (2.38), the material and the
partial densities are correlated to each other.

ρα = nα ραR (2.46)

If the volume fractions change with time under external loading, from (2.46)
follows that for an intrinsically incompressible individual constituent (constant
material mass density) compressibility referred to the overall aggregate is ob-
served.

ραR = const ⇒ ρα �= const as nα �= const (2.47)

Obviously, the mass density of the porous medium (homogenized overall aggre-
gate) is defined as the sum of the partial densities of its constituents.

ρ =
∑
α

ρα (2.48)

The conceptual idea behind the formulations and relations presented above con-
sists in the assumption that the mass fractions of all constituents of the multi-
phase medium are simultaneously present and statistically uniformly distributed
over the entire control domain. Within this context, the material body under
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consideration is theoretically substituted by an aggregate completely and con-
tinuously filled by superimposed (overlapping) homogenized partial continua. In
other words, all constituents of a porous medium are characterized as smeared
substitute continua with reduced mass densities. Consequently, the motion and
physics of the individual constituents, as well as the overall aggregate, can be
specified by well-accepted phenomenological methods of continuum mechanics.

When describing the transport and deformation of the constituents of porous
media within the framework of continuum mechanics, it is assumed that the ge-
ometry of the control domain under consideration is characterized at each time
by the solid skeleton, whereas the fluid pore content is able to flow across the
boundary of the surface. This assumption serves as the conceptual nucleus for
the simulation of complex, coupled physical processes in multiphase porous me-
dia, particularly if a deformable solid skeleton is observed. Within this context,
it proves to be reasonable not to model the absolute motion state of the pore
content, but its motion relative to the motion of the solid phase, considering the
porous medium as a local thermodynamic open system with the solid skeleton
as volume under observation.

The macroscopic characterization of the physical processes considering the real
microstructural situation in a statistically averaged manner is completely ade-
quate for the most hydrological, geotechnological and biomechanical problems
under consideration (cf. [24] and others).

2.3 Balance Equations

We derive the balance equations for phase and component masses as well as for
momentum and energy of a porous medium.

2.3.1 Phase Mass Balance

We consider the mass balance of individual phases of a porous medium. Neglect-
ing mass exchange between the phases (no dissolution and sorption processes),
the local mass balance for the individual constituent ϕα of the porous medium
is given by

dαρ
α

dt
+ ρα∇ · vα =

∂ρα

dt
+∇ · (ραvα) = 0 (2.49)

with the velocity vα of the constituent under consideration, and the usual di-
vergence operator ∇ · (). From the velocity-displacement relation for the solid
skeleton follows

vs = u̇s (2.50)

with the solid displacement vector us. The derivative

dαA

dt
=
∂A

dt
+ vα · ∇A (2.51)
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with the usual gradient operator ∇() denotes the material time derivative of
an arbitrary variable A with respect to the motion of a material point of the
constituent ϕα (cf. (2.18)). It consists of a local (diffusive) part and a convective
part associated with the velocity of the constituent.

As mentioned above, the transport processes of the fluid constituents of a porous
medium are considered as their relative motion with respect to the motion of the
deformable solid skeleton. Consequently, the relations between the material time
derivatives (here, of an arbitrary variable A) with respect to the solid skeleton,
and with respect to the individual fluid constituent ϕγ is of crucial interest in
terms of a unified numerical characterization of the different processes.

dγA

dt
=
dsA

dt
+ vγs · ∇A (2.52)

Here,

vγs = vγ − u̇s (2.53)

is the so-called seepage velocity describing the fluid motions with respect to the
deforming skeleton material.

According to the generalized formulation (2.49), considering equations (2.40)
and (2.46), the local solid phase mass balance is given by

ds
[
(1− n)ρsR

]
dt

+ (1− n) ρsR∇ · u̇s = 0 (2.54)

Assuming material incompressibility of the solid phase, i.e. dsρ
sR/dt=0 we

derive the following expression for porosity changes.

dsn

dt
= (1− n)∇ · u̇s = 0 (2.55)

Following the same procedure, additionally considering (2.42) and (2.52), the
mass balance relations for the fluid constituents ϕγ can be defined with respect
to the solid phase motion.

ds
(
nSγργR

)
dt

+∇ · (nSγργRvγs)+ nSγργR∇ · u̇s = 0 (2.56)

Applying the solid phase mass balance (2.54), (2.56) can be represented in a
more detailed description.

nSγ
dsρ

γR

dt
+ nργR

dsS
γ

dt

+∇ · (ργwγs) + SγργR∇ · u̇s = 0 (2.57)
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Here
wγs = nSγvγs (2.58)

is usually denoted as filter velocity of the motion of the pore fluid constituent ϕγ .

Rewriting (2.57) in terms of partial derivatives we yield

nSγ
∂ργR

∂t
+ nSγvγs · ∇ργR + nργR

∂Sγ

∂t
+ nργRvγs · ∇Sγ

+∇ · (ργnSγvγs) + SγργR∇ · u̇s = 0 (2.59)

Primary Variables

The selection of primary variables is important and is ruled by our interest in
non-isothermal and non-isobaric processes which promotes the choice of pressure
p and temperature T as primary variables. The substitutions of phase density

dρα(p, T ) =
∂ρα

∂p
dp+

∂ρα

∂T
dT (2.60)

and phase saturation

dSα(p, T )
∂Sα

∂p
dp+

∂Sα

∂T
dT (2.61)

will result in formulations of the phase mass balance equations in terms of the
selected primary variables.

2.3.2 Momentum Balance

When dealing with flow in porous and fractured media we have to consider the
mechanics of fluids in tubes and channels. The governing equation for flow of
incompressible viscous fluids is the well-known Navier–Stokes equation

∂v

∂t
+ (v · ∇)v

︸ ︷︷ ︸
inertial terms

= g− 1

ρ
∇p+ μ

ρ
∇2v

︸ ︷︷ ︸
viscous term

(2.62)

The Navier–Stokes equation can be integrated for laminar flow in straight, cir-
cular tubes when steady-state boundary conditions are applied. In this case
convective acceleration term (v · ∇)v becomes zero. This solution is called the
Hagen-Poiseuille equation [25].

Δp =
8μL

πR4
Q (2.63)

where Q is the volumetric flow rate, which is velocity multiplied by tube cross-
section area, L is tube length and R is tube radius. The linear relationship
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between pressure drop and flow rate Q breaks down if convective acceleration
and/or transient effects become important. The first case denotes non-linear
laminar flow, when inertial effects become important, e.g. due to curvature
of tubes or channels. The second case is related to turbulent flow, when flow
pattern become transient due to velocity fluctuations.

Confusion between non-linear laminar flow and ’true’ turbulent flow may arise
from the fact that—concerning the relationship between pressure drop and the
flow rate—inertia effects in laminar flow are expressed in the same fashion as in
turbulent flows

Δp = AQ +BQ2 . (2.64)

This means if inertia effects or turbulence effects become significant, the relation-
ship between pressure drop and flow rate (2.63) is no longer linear. Therefore,
we have to distinguish between three different flow regimes: linear laminar flow,
non-linear laminar flow and ’true’ turbulent flow. Equation (2.64) is known as
the Forchheimer equation [26].

[27] found that the volume of fluid percolating through a sand column is pro-
portional to the applied pressure difference

Q = qA = A
k

μ

Δp

L
→ Δp =

L

A

μ

k
Q . (2.65)

Comparing the structure of (2.65) and (2.63), the analogy between porous media
flow and tube flow becomes obvious. Both equations are characterized by linear
relationships between pressure drop and flow rate.

Darcy’s law can be derived from the Navier–Stokes equations. To this purpose a
spatial averaging procedure over a representative elementary volume (REV) has
to be conducted, where microscopic quantities are transformed into macroscopic
ones [9]

〈ψ〉 = 1

REV

∫

REV

ψ dV (2.66)

where ψ is a local, microscopic quantity and 〈ψ〉 is a spatially averaged macro-
scopic quantity. 2 For fractures the averaging procedure can be split into two
steps

〈ψ〉 = 1

2bREA

∫ +b

−b

∫

REA

ψ dxdA (2.67)

where b is half fracture aperture and REA is a representative elementary area. In
the following we deal with quantities which are averaged over fracture thickness
and, therefore, are representative for a certain area of fracture surface.

2See also (2.29) for general definition of a mean value for a porous medium. Both notations
ψ and 〈ψ〉 are common in literature.
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Darcy’s law is based essentially on the assumption that fluid motion is inertia-
less, i.e. inertial terms can be neglected with regard to viscous forces

0 = 〈g〉 − 1

〈ρ〉∇〈p〉+ 〈μ〉
〈ρ〉∇

2〈v〉 . (2.68)

Brackets indicate macroscopic quantities. Thus Darcian flow is a special case of
creeping flow for which viscous forces prevail over inertial forces. A central topic
in porous medium theory is the determination of the viscous drag term. This
leads to the concept of permeability for characterization of the hydromechani-
cal properties of porous media [28]. Introducing permeability in the following
manner

∇2〈v〉 = −k−1 w (2.69)

where k is the permeability of the porous medium and v is the Darcy or seep-
age velocity, which are macroscopic quantities by definition. Substituting this
expression into (2.68) we obtain

0 = g − 1

〈ρ〉∇〈p〉 − 〈μ〉
〈ρ〉k

−1w . (2.70)

Rearranging the terms, we yield the usual form of Darcy’s law. We omit the
averaging brackets in the following to keep the notation brief.

w = −k

μ
(∇p− ρg) . (2.71)

We emphasize that quantities in the above Darcy equation are macroscopic
ones related to a certain REV of a porous medium, whereas quantities in the
Navier–Stokes equation (2.62) have local meaning.

Darcy’s law has been accepted as a fundamental relationship for porous medium
hydraulics. However, its validity is restricted to a certain range of geometric
and physical conditions. Deviations from linearity between seepage velocity and
pressure drop are denoted as non-Darcian flow. Geometric issues are concerned
with pore and fracture geometry.

As described above we used the analogy of flow in straight tubes for explanation
of hydromechanical processes in porous media. A tube bundles model is one
approach to hydromechanics of porous media. However in real geologic materials
pores are curved, have varying cross-sections, may be sealed, and suffer from
dead-end effects. Rock fractures are characterized by rough surfaces. Physical
causes underlying non-linear effects can be high flow rates, molecular effects,
ionic effects and non-Newtonian behavior of the fluid itself [29].
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Darcy’s Law

For linear momentum conservation in porous media we assume, in general, that
inertial forces can be neglected (i.e. dv/dt ≈ 0) and body forces are gravity at
all. Assuming furthermore that internal fluid friction is small in comparison to
friction on the fluid–solid interface and that turbulence effects can be neglected
we obtain the Darcy law for each fluid phase γ in multiphase flow (cf. (2.58)).

wγs = nSγ(vγ − vs) = −nSγ
(
kγrelk

μγ
(∇pγ − ργg )

)
(2.72)

2.3.3 Energy Balance

Heat Transport

The equation of energy conservation is derived from the first law of thermody-
namics which states that the variation of the total energy of a system is due to
the work of acting forces and heat transmitted to the system.

The total energy per unit mass e specific energy) can be defined as the sum
of internal (thermal) energy i and specific kinetic energy v2/2. Internal energy
is due to molecular movement. Gravitation is considered as an energy source
term, i.e. a body force which does work on the fluid element as it moves through
the gravity field. The conservation quantity for energy balance is total energy
density

ψe = ρe = ρ(i+ v2/2) (2.73)

Using mass and momentum conservation we can derive the following balance
equation for the internal energy

ρ
di

dt
= ρqi −∇ · jth + σ · ∇v (2.74)

where qi is the internal energy (heat) source, and jth is the diffusive heat flux.
Applying the chain rule to the left hand side of the above equation yields

ρ
di

dt
= ρ

dcT

dt
= ρc

dT

dt
+ ρT

dc

dt
(2.75)

and utilizing the definition of the material derivative

dT

dt
=
∂T

∂t
+ v · ∇T (2.76)

we obtain the heat energy balance equation

ρc
∂T

∂t
+ ρcv · ∇T −∇ · λ∇T + ρT

dc

dt
− σ · ∇v = ρqth (2.77)
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Porous Medium

The heat balance equation for the porous medium consisting of several solid and
fluid phases is given by

(
∑
α

εαcαρα)
∂T

∂t
+∇ ·

(
(
∑
γ

nSγργcγvγ)T − (
∑
α

εαλα)∇T
)

=

∑
α

εαραqth + (
∑
γ

nSγvγ) · ∇σ (2.78)

where α is all phases and γ is fluid phases, respectively.

Most important is the assumption of local thermodynamic equilibrium, meaning
that all phase temperatures are equal and, therefore, phase contributions can
be superposed. The phase change terms are canceled out with the addition of
the individual phases.

2.4 Fluid Properties

The above balance equations derived from first principles (Sect. 2.3) are
“material-less”, i.e. they are valid for any kind of material. Constitutive re-
lationships are necessary to close the balance equations as well as to specify the
properties for fluid flow, heat transfer and mechanical stress/deformation of the
specific material under consideration. For determination of material properties
laboratory tests have to be conducted. A number of material properties cannot
be determined directly. This must be done by back analysis using inverse mod-
eling. We organized the description of material properties into two sections:
Fluid and mechanical properties (2.5) for THM/C processes in porous media.

As we have to deal with a large variety of geotechnical and hydrological appli-
cations (Sect. 1) we allow the most complex case for fluid properties including
phase changes. We consider very general equations of state (EOS) such as
Redlich-Kwong [30], Peng-Robinson [31] equations as well as the fundamental
Helmholtz free energy equation (2.89).

Figure 2.9 shows as an example the phase diagram in case of CO2 as working
fluid. If we are interested in different fluids (e.g. CH4, H2O, and N2) Table 2.2
gives an overview of the corresponding fluid property correlations.

2.4.1 Density

In subsurface oil and gas reservoirs, properties of gases and liquids strongly
depend on environmental pressure and temperature conditions. Equations of
state (EOS) may be used to describe the relationship of volume, pressure and



www.manaraa.com

2.4 FLUID PROPERTIES 33

Figure 2.9: Phase diagram of carbon dioxide. The two extreme conditions
( [400]K at [6.5]MPa and [300]K at [7]MPa) are crossing a phase
boundary of CO2, so a phase change from hot gas to a liquid state
will be forced

Table 2.2: References for fluid properties of CH4, CO2, H2O, and N2

Fluid Specifier Density Viscosity

Methane CH4 CH4-RK [30] Friend, 1989 [32]
CH4-PR [31]
CH4-HE [33]

Carbon dioxide CO2 CO2-RK [30] Fenghour, 1998 [34]
CO2-PR [31]
CO2-HE [35]

Water H2O H2O-RK [30] IAPWS, 1998 [36]
H2O-PR [31]
H2O-HE [37]

Nitrogen N2 N2-RK [30] Stephan, 1987 [38]
N2-PR [31]
N2-HE [39]

temperature of a real fluid. The knowledge of a fluid’s volume or its density
is essential to estimate further thermodynamic properties. The first EOS for
real gases, which was based on the ideal gas law, was presented by Johannes
Diderik van der Waals in 1873 [40]. In 1910 he received the Nobel Prize for the
development of the equation

p =
RT

Vm − b
− a

V 2
m

(2.79)

where p is the pressure, R is the gas constant, T is the temperature, Vm is the
molar volume and a and b are correcting parameters.
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Table 2.3: Fluid properties used in equations of state, where ω is the acentric
factor, Tc and pc are temperature and pressure at the critical point
and R is the gas constant

Fluid ω [-] Tc [K] pc [MPa] R [J/kg/K]

Carbon dioxide 0.239 304.13 7.38 188.9
Ethane 0.099 305.32 4.87 276.5
Methane 0.011 190.56 4.60 518.3
Water 0.344 647.10 22.06 461.5

Redlich-Kwong equation of state (RKEOS) The equation of Redlich
and Kwong from 1949 (2.80) represents just a little improvement of the van der
Waals equation [30]. It is given as

p =
RT

Vm − b
− a

T 0.5 Vm (Vm + b)
. (2.80)

The results are satisfactory only for temperatures above the critical point
(see Table 2.3).

Equation (2.80) can be recasted as a cubic equation in terms of volume

V 3
m − RT

p
V 2
m −
(
RTb

p
− a

T 0.5p
+ b2
)
Vm − ab

T 0.5p
= 0. (2.81)

This equation yields to one or three real roots depending on the number of phases
in the system. In the two-phase region, the largest positive root represents the
molar volume of the gas phase while the smallest root corresponds to the volume
of the liquid phase. The correcting terms a and b are given as

a = 0.4275
R2T 2.5

c

pc
(2.82)

and

b = 0.0866
RTc
pc

(2.83)

where Tc and pc are temperature and pressure at the critical point (see
Table 2.3). Figures 2.10 and 2.11 show the results of the RKEOS for sev-
eral substances at four different temperatures in comparison to other equations
of state.

Peng-Robinson equation of state (PREOS) D.Y. Peng and D. B.
Robinson presented an improvement of the RKEOS in 1975 [31]. The proposed
equation is also a two-constant van der Waals-Type equation and combines sim-
plicity and accuracy. The PREOS is very simple to solve and gives satisfying
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Figure 2.10: Density of CH4 (a) and CO2 (b) derived by different EOS. Here
stands for the Helmholtz Free Energy, for the PREOS

and for the RKEOS. The colours refer to different tempera-
tures (blue - [280]K, violet - [320]K, pink - [400]K, red - [680]K)
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Figure 2.11: Density of H2O (a) and N2 (b) derived by different EOS. Here
stands for the Helmholtz Free Energy, for the PREOS

and for the RKEOS. The colours refer to different tempera-
tures (blue - [280]K, violet - [320]K, pink - [400]K, red - [680]K)

results within the whole fluid region of a gas. It is given in the form

p =
RT

Vm − b
− a(Tc) · α(Tr, ω)
V 2
m + 2 · bVm − b2

(2.84)
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where a and b are correcting terms. They can be derived by

a(Tc) = 0.45724
R2T 2

c

pc
(2.85)

and

b(Tc) = 0.07780
RTc
pc

(2.86)

for the particular fluids under specification of pressure and temperature at the
critical point. Parameter α(Tr, ω) is a dimensionless function of reduced tem-
perature Tr and acentric factor ω. It is given as

α =
(
1 +
(
0.37464 + 1.54226ω− 0.26992ω2

) (
1− T 0.5

r

))2
(2.87)

for ω ≤ 0.49 and

α =
(
1 + (0.379642+ (1.48503− (1.164423− 1.016666ω)ω)ω)

(
1− T 0.5

r

))2
(2.88)

for ω > 0.49. Table 2.3 shows acentric factors and critical parameters for dif-
ferent real gases. The resulting density distribution of the PREOS is shown in
Figs. 2.10 and 2.11 at four different temperatures.

Fundamental equations For highly precise results it is necessary to adapt
fundamental equations based on the free energy. The Helmholtz free energy
is given as

f(ρ, T )

RT
= φ(δ, τ) = φo(δ, τ) + φr(δ, τ) (2.89)

in dependence from density ρ and temperature T in its dimensionless form.
These dimensionless parts are given as the terms δ = ρ/ρc and τ = Tc/T ,
whereas ρc and Tc are density and temperature at the critical point (see
Table 2.3). The Helmholtz free energy provides relations between density,
temperature and all thermodynamic properties of a fluid, which are expressed
in the parameter φo as the ideal gas part and φr as the residual part. For their
derivatives in the short forms like φrδ, φ

r
δδ, φ

r
τ , φ

r
ττ , φ

r
δτ , φ

o
τ , φ

o
ττ refer to [35].

Several authors have used the approach of Helmholtz free energy to develop
EOS for different substances, e. g. :

• Span & Wagner [35], [41], [39] for carbon dioxide and for nitrogen,

• Pruss & Wagner [42], [37] for water,

• Bücker & Wagner [43] for ethane and

• Setzmann & Wagner [33] for methane.
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Table 2.4: Ranges of validity of the free Helmholtz equation (2.89) for several
fluids valid from the melting point up to the indicated values

Fluid T [K] p [MPa] Reference

Carbon dioxide 216 1,100 [35], [41]
Nitrogen 1,000 2,200 [39]
Ethane 520 30 [43]
Methane 625 1,000 [33]
Water 1,273 1,000 [42], [37]

The fundamental equation (2.89) according to Wagner et al. ([35],[42],[43], and
[33]) is one of the most precise EOS at present. The equation and its derivatives
can be used to describe all thermodynamic properties of a pure substance de-
pending on density and temperature. So, it is necessary to solve the relationship
between density, pressure and temperature iteratively, as (2.90) shows

p(δ, τ)

ρRT
= 1 + δ

∂φr

∂δ
. (2.90)

For water, fluid properties are provided by the IAPWS 3 1995 steam table equa-
tions. To ease computational time, it is also possible to choose an iterative
algorithm or to interpolate density values out of a database.

The semi-empirical fundamental equation (2.89) has to be fitted to measurement
data by computer algorithms for each substance. Depending on the fluid, there
are up to 200 adjusting coefficients to ensure a very accurate fit to the real gas
behaviour. For each substance, (2.89) has separate ranges of validity, which are
shown in Table 2.4.

2.4.2 Enthalpy

The specific enthalpy h is the whole amount of energy of a fluid. It consists
of the internal energy and the volume changing work. It can be expressed by
deviations of the free Helmholtz energy as

h(δ, τ)

RT
= 1 + τ (φoτ + φrτ ) + δφrδ. (2.91)

2.4.3 Entropy

The entropy s represents which amount of the energy of a system is potentially
available to do work and which amount of it is potentially defined as heat. In

3International Association for the Properties of Water and Steam.
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classical thermodynamics, the validity for the entropy is the thermodynamical
system in equilibrium. The following equation is given for the entropy:

s(δ, τ)

R
= τ (φoτ + φrτ )− φo − φr . (2.92)

2.4.4 Heat Capacity

The specific heat capacity of a fluid is defined as the amount of heat which is
needed to increase the temperature of a fluid of [1] kg by [1]K. In thermody-
namics, it is distinguished between a heat capacity at constant pressure, the
isobaric heat capacity, and a heat capacity at a constant volume, the isochoric
heat capacity. Both can be expressed in terms of free Helmholtz energy, like
the following equations show:

isobaric heat capacity

cp(δ, τ)

R
= −τ2 (φoττ + φrττ ) +

(1 + δφrδ − δτφrδτ )
2

(1 + 2δφrδ + δ2φrδδ)
(2.93)

isochoric heat capacity

cv(δ, τ)

R
= −τ2 (φoττ + φrττ ) . (2.94)

Due to the high number of adjusting coefficients, the properties based on the
Helmholtz free energy may be seen as very accurate. On the other hand,
the iterative solution of (2.90) requires long computing times, so for long-term
simulations or for simulations with a high number of elements, it would be better
to use the van der Waals-type equations of Redlich-Kwong or Peng-Robinson.
These cubic equations are easy to solve and lead to results very fast. Figures 2.12
and 2.13 illustrate, in which range of temperature and pressure those simple
EOS may be used. Here, thermodynamical properties of carbon dioxide based
on temperature and density are shown calculated by different EOS. In general, if
temperature rises while pressure is declining, the behaviour of a fluid approaches
that of the ideal gas and the cubic equations of state give suitable results.
For instance, the resulting entropy and enthalpy values of carbon dioxide at
low pressures and high temperatures are identical, regardless of the density
model they are based on (see Fig. 2.12a and 2.12b). In the liquid and the dense
supercritical region, the results based on different EOS diverge increasingly.

In addition, in the vicinity of the saturation curve, the results based on the van
der Waals-type EOS may show large variations compared to the fundamental
equation based curves (Helmholtz free energy). Particularly, this becomes
apparent from Fig. 2.13a and 2.13b, where the heat capacities of CO2 are given.
The heat capacities at [400]K and [680]K (in the supercritical region of CO2,



www.manaraa.com

2.4 FLUID PROPERTIES 39

pressure [Pa]

h 
[k

J⋅
kg

-1
]

105 106 107 108

-400

-200

0

200

400

600

800

1000
Peng-Robinson
Redlich-Kwong
Helmholtz Free Energy
280 K
320 K
400 K
680 K

Carbon Dioxide
Enthalpy

pressure [Pa]
s 

[k
J⋅

kg
-1

 ⋅K
-1

]

105 106 107 108
-3

-2

-1

0

1

2
Peng-Robinson
Redlich-Kwong
Helmholtz Free Energy
280 K
320 K
400 K
680 K

Carbon Dioxide
Entropy

a b

Figure 2.12: Enthalpy (a) and entropy (b) of CO2 based on different EOS. Here
stands for the Helmholtz Free Energy, for the PREOS

and for the RKEOS. The colours refer to different tempera-
tures (blue - [280]K, violet - [320]K, pink - [400]K, red - [680]K)
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Figure 2.13: Isobaric heat capacity (a) and isochoric heat capacity (b) of CO2

based on different EOS. Here stands for the Helmholtz

Free Energy, for the PREOS and for the RKEOS.
The colours refer to different temperatures (blue - [280]K, violet -
[320]K, pink - [400]K, red - [680]K)

where no phase boundary exists) are identical, independent from the according
density model. Within the two-phase region at [280]K and [320]K, a strong
deviation at the phase boundary can be seen.

For water, the cubic EOS are not suitable. Water is a high critical fluid, so
its properties are too complex to be described by simple approaches. As we
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can see in Fig. 2.11a, the RKEOS, as well as the PREOS equation give viable
results only at pressures below [1]MPa and at high temperatures. Therefore it
is recommended to use the fundamental equation of the Helmholtz free energy
to estimate the density of water.

2.4.5 Viscosity

Many authors have developed correlation equations for viscosity η of fluids at a
density ρ and a temperature T . Those correlation equations may be composed
of two or three terms, like

η(ρ, T ) = η0(T ) + ηex(ρ, T ) (2.95)

or

η(ρ, T ) = η0(T ) + Δη(ρ, T ) + Δηc(ρ, T ). (2.96)

In the two-term form, the viscosity correlation consists of a zero-density limit vis-
cosity η0(T ) at a temperature T , and an excess contribution viscosity ηex(ρ, T )
at a density ρ and a temperature T . This type of correlation function is used
(among others) by Friend et al. [32] or Stephan et al. [38]. The formulation
can be enhanced by a term describing the viscosity in the immediate vicinity
of the critical point, Δη(ρ, T ) (2.96), as described in Fenghour et al. [34] or
Huber et al. [36]. An overview about the used viscosity correlations for several
substances is given in Table 2.5. To show an example, Fig. 2.14a portrays the
resulting viscosities for carbon dioxide based on densities of different EOS.

2.4.6 Thermal Conductivity

Similar to the correlations between viscosity and T and p, the thermal conduc-
tivity λ can be expressed by an equation consisting of the following three parts
(see [45]): A conductivity in the limit of zero-density λ0(0, T ), where only two-
body interaction occurs, a term Δcλ(ρ, T ) which enhances the property function
in the critical region of the fluid, and finally Δλ(ρ, T ) which represents the con-
tribution of all other effects to the thermal conductivity at elevated densities

Table 2.5: Ranges of T and p validity for viscosity correlations for several
substances

Fluid T [K] p [MPa] Reference

Carbon dioxide 200–1,500 ≤ 300 [34]
Nitrogen 70–1,100 ≤ 100 [38]
Ethane 90–625 ≤ 30 [44]
Methane 91–600 ≤ 100 [32]
Water 273–1,173 ≤ 100 [36]
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Figure 2.14: Viscosity (a) and thermal conductivity (b) of CO2 based on dif-
ferent EOS. Here stands for the Helmholtz Free Energy,

for the PREOS and for the RKEOS. The colours refer
to different temperatures (blue - [280]K, violet - [320]K, pink -
[400]K, red - [680]K)

Table 2.6: Ranges of T and p validity for thermal conductivity correlations for
several substances

Fluid T [K] p [MPa] Reference

Carbon dioxide 200–1,000 ≤ 100 [34]
Nitrogen 70–1,100 ≤ 100 [38]
Ethane ≤ 600 ≤ 70 [46]
Methane ≤ 200 ≤ 600 [46]
Water ≤ 800 ≤ 100 [47]

including many-body collisions, molecular-velocity correlations and collisional
transfer. This equation is

λ(ρ, T ) = λ0(T ) + Δλ(ρ) + Δcλ(ρ, T ). (2.97)

Figure 2.14b shows the thermal conductivity of carbon dioxide at four tempera-
tures based on different EOS. In Table 2.6 the ranges for the validity of T and p
concerning thermal conductivity correlations for several substances are shown.

2.5 Mechanical Properties

Constitutive equations (i.e. constitutive relations, material laws) are relations
between measures of deformation (e.g. strain tensor) and internal force density
functions (stress tensor) resulting from the action of external forces. Usually,
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they are not laws of nature but represent mathematical models intended to
characterize the typical material behavior based on physically reasonable as-
sumptions (particularly consistent with the thermodynamic balance relations)
and mathematically correct approaches.

2.5.1 Effective Stress Principle

The total Cauchy’s stress tensor in porous media is decomposed in partial
stresses referring to the participating phases (note the sign convention of posi-
tive fluid phase pressure pγ , but negative compressive normal stress for the solid
phase).

σ = (1− n)σs − n

(∑
γ

Sγ pγ

)
I (2.98)

Considering the effective stress principle, relation (2.98) can be modified defining
the effective solid stress σseff as well as the overall fluid pressure pγ

σ = (1− n)

[
σs +

(∑
γ

Sγ pγ

)
I

]
−
(∑

γ

Sγ pγ

)
I

= σeff −
(∑

γ

Sγ pγ

)
I (2.99)

Effective stress is the difference between the total stress and pore fluid pressure.
Consequently, its absolute value is lower than the intrinsic stress of the solid
skeleton. Constitutive relations for the solid phase of porous media combine
the solid skeleton deformation (in terms of the strain tensor) with the effective
solid stress. Selected models are presented in the next paragraphs. As they are
equally valid for single-phase solid materials as well as for the solid phase of
porous media, the special notation of the effective stress tensor will be omitted
without loss of generality.

Based on the stress decomposition (2.99), the equilibrium condition for the
porous medium becomes

ρg + ∇ · σeff −
(∑

γ

Sγ pγ

)
I = 0 (2.100)

2.5.2 Material Classes

Usually laboratory tests are performed on specimens to investigate the mechan-
ical behavior. Within this context, similar stress-strain curves can be caused by
different physical effects, e.g. a nonlinear stress-strain curve does not necessar-
ily suggest inelastic material behavior. For the sake of clarity, it is possible to
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introduce a classification of materials based on some essential, distinctly iden-
tifiable material phenomena. For instance, comparatively simple experiments
can be performed to investigate if the stress-strain curves are rate-dependent,
and if hysteresis phenomena occur, indicating dissipative effects.

Based on these assumptions the observable material behavior can be divided
into four different basic classes:

• rate-independent without hysteresis,

• rate-independent with hysteresis,

• rate-dependent without hysteresis, and

• rate-dependent with hysteresis.

Figures 2.15 and 2.16 schematically show typical cyclic stress-strain curves for
these material classes. The equilibrium curves, presented in Fig. 2.16 can be
observed as a result of relaxation experiments.

Figure 2.15: Experimentally observed rate-independent solid material behavior.
Cyclic uniaxial stress-strain curves [17]: elasticity (left) and elasto-
plasticity (right)

Figure 2.16: Experimentally observed rate-dependent solid material behavior.
Cyclic uniaxial stress-strain curves [17]: viscoelasticity (left) and
viscoplasticity (right)
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According to the experimental observations, there are four classes of mathemat-
ical models matching the material classes defined above:

• the theory of elasticity describes rate-independent material behavior with-
out hysteresis,

• the theory of (elasto)plasticity describes rate-independent material behav-
ior with hysteresis,

• the theory of viscoelasticity describes rate-dependent material behavior
without hysteresis, and

• the theory of viscoplasticity describes rate-dependent material behavior
with hysteresis.

Physically significant constitutive relations in the uniaxial case can be defined
for the four classes of material theories based on so-called rheological models.
These complex models consist of a simple networks of individual rheological
elements (cf. Fig. 2.17), like

• elastic springs, which correspond to the linear stress-strain relation

σ = k ε (2.101)

with the spring constant k representing the proportionality factor,

• viscous dashpots, which represent Newtonian viscous substances, and obey
a linear relation between stress and strain rate

σ = η
.
ε (2.102)

with the proportionality factor η characterizing the viscosity, and

• Coulomb friction elements, resisting any motion until a threshold stress σ�

is reached, whereas behind the threshold irreversible deformations occur

ε =

{
0, if σ < σ�

ε(t), if σ ≥ σ�
(2.103)

Figure 2.17: Mathematical modeling of solid material behavior. Basic individ-
ual elements of rheological models [48]: spring element (left), dash-
pot element (middle) and frictional element (right)
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Figure 2.18: Mathematical modeling of rate-independent solid material behav-
ior. Cyclic uniaxial stress-strain curves [17]: elasticity (spring
element – left) and elastoplasticity (spring and frictional elements –
right)

Figure 2.19: Mathematical modeling of rate-dependent solid material behavior.
Cyclic uniaxial stress-strain curves [17]: viscoelasticity (spring and
dashpot elements – left) and viscoplasticity (spring, dashpot, and
frictional elements – right)

Differential equations, which are defined based on an appropriate composition of
rheological models are only in a few special cases suitable to describe material
response to external loading observed in reality. They can however serve for
marking the physical significance of mathematical models within the context of
material theories. In Figs. 2.18 and 2.19 typical rheological models are presented,
which characterize the material behavior of the four material classes defined
above.

In Table 2.7 some typical technical, as well as natural (including geological), ma-
terials are assigned to the generalized material classes considering their material
behavior, which can be observed for characteristic application cases. Generally,
the classification of the material behavior depends on the real loading regime
(e.g. small or large strains), environmental conditions (e.g. temperature), and
the time scale of the physical processes under consideration. Changing one or
more of these conditions on the same material can demonstrate different me-
chanical behavior. Basically, no materials are actually purely elastic over a
wide range of stresses, temperature, and time. Otherwise, developing and using
complex constitutive models, which include all observable phenomena is not
advisable for practical reasons. Constitutive relations, rather, should represent
idealized and simplified models according to the most dominating conditions
appearing in the practical applications under consideration.
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Table 2.7: Generalized classes of solid material behavior, and selected, typical
representatives

Material class Technical/natural material Geomaterial

Elasticity Metals at small strains, Igneous rocks

ceramics, (e.g. granite),

bone, hard sedimentary rocks

most other materials at small
strains

(e.g. sandstone)

Elastoplasticity Metals at large strains Most soils,

soft sedimentary rocks
(e.g. tuff)

Viscoelasticity Rubber, Rock salt (halite)

glass,

soft biological tissues

Viscoplasticity Polymers (plastics), Clay soils,

wood, clay stone

bitumen,

metals at high temperature

2.5.3 Elasticity

In a micromechanical point of view, elasticity is predominantly caused by the
evolution of interatomic forces in response to the impact of external forces. It
can be observed for crystalline substances (where the atoms are established in
regular structures) as well as for amorphous materials (where the atoms compose
irregular structures), and is characterized by reversibility of the deformation
processes and the absence of any hysteresis. Furthermore, it is assumed that
the current stress state is uniquely defined by the current strain state, and
does not depend on the strain history. Consequently, within the context of the
constitutive model, the stress tensor is a function of the strain tensor, but it
does not depend on the strain rate.

The isothermal isotropic linear elastic material model

σ = 2μ ε + λ tr(ε) I (2.104)

known as generalized Hooke’s law is the simplest of all constitutive models
for solid material behavior. Instead of the so-called Lamé constants μ and
λ, Hooke’s law is often represented in terms of other material parameters like
the Young’s modulus (i.e. elastic modulus, coefficient of elasticity, modulus of
elasticity et al.) E, the Poisson’s ratio ν, the shear modulus G, and the bulk
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modulus K. Some useful relations between these parameters are as follows:

E = μ
2μ+ 3λ

μ+ λ
, ν =

λ

2(μ+ λ)

μ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)

G =
E

2(1 + ν)
= μ

K =
E

3(1− 2ν)
=

(μ+ λ)(2μ+ 3λ)

3

Thus, the coefficients of the consistent material matrix dσ/dε , which are re-
quired for the numerical simulation of mechanical material behavior can be
represented clearly in the case of linear elasticity.

C
4

≡ Cijkl =
dσij
dεkl

= 2μ δik δjl + λ δij δkl (2.105)

If a coupling of mechanical and thermal processes occurs (non-isothermal me-
chanical processes), in addition to the strain caused by the impact of external
forces a volumetric thermal strain can be observed, which usually is linearly
related to the temperature difference.

εth = αT (T − T0) I (2.106)

Here, αT denotes the linear thermal expansion coefficient, and T0 the initial
temperature. In small strain solid mechanics it is common practice to consider
additive decompositions of the overall strain tensor into several constitutive
parts according to the observed physical phenomena. Considering thermoelastic
material behavior, the overall strain tensor consists of an elastic part and a
thermal part.

ε = εel + εth (2.107)

As Hooke’s law (2.104) has to be perceived as a constitutive model, which assigns
the local stress state to local elastic strains, a non-isothermal generalization can
be defined easily.

σ = 2μ εel + λ tr(εel) I = 2μ ε + λ tr(ε) I − (2μ+ 3λ) εth (2.108)

A conclusion drawn from Hooke’s law of linear elasticity is the specific repre-
sentation of the equilibrium condition for a thermo-poro-elastic porous medium
in the case of small strains.

∇ ·
(
σeff(ε) −

(∑
γ

Sγ pγ

)
I − 2μ+ 3λ

3
αT (T − T0) I

)
= ρ g (2.109)
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Table 2.8: Elastic material parameters for selected geomaterials

Material Young’s modulus
[GPa]

Poisson’s ratio

Sand 0.03. . . 0.6 0.10. . . 0.40

Clay 0.03. . . 0.3 0.12. . . 0.40

Clay stone 3. . . 11 0.10. . . 0.27

Salt rock 12. . . 42 0.09. . . 0.49

Sandstone 4. . . 19 0.12. . . 0.20

Granite 17. . . 56 0.11. . . 0.27

Basalt 31. . . 97 0.19. . . 0.30

Limestone 13. . . 53 0.11. . . 0.40

Although no materials are actually linearly elastic over a wide range of stresses,
elastic constitutive models are often quite useful and accurate in many practical
applications, e.g. in rock mechanics. The elastic material parameters given
in Table 2.8 for selected soils and rocks show the large variation of material
parameters, which is typical for geomaterials.

2.5.4 Elastoplasticity

The phenomenon of plastic yielding can be mainly observed in crystalline solid
materials. It is associated with the motion of defects (so-called dislocations, dis-
continuities) of the regular atomic structure during deformation. Elastoplastic
material behavior is characterized by elastic material response at the beginning
of the deformation process. If a critical stress (the so-called yield stress) is
reached, plastic flow occurs, whereas elastic material behavior can be observed
again at the beginning of each unloading phase of a cyclic loading process.

In the case of elastic-perfectly plastic material behavior, the stresses remain
unchanged during plastic flow keeping the yield stress value. Usually, real ma-
terials show elastoplastic material behavior with hardening effects, which are
distinguished by an increase of stresses during plastic flow with a much lower
slope of the stress-strain curve compared to the elastic phases of the entire de-
formation process. Elastoplastic material behavior with negligible elastic share
is called rigid plasticity (see Fig. 2.20).

During plastic flow a certain fraction of the strain energy is transformed into
thermal energy or stored as internal energy due to a remodeling of the microstruc-
ture. Therefore, when analyzing cyclic elastoplastic processes rate-independent
hystereses can be observed. Additionally, plastic deformation processes prove
themselves to be irreversible.
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Figure 2.20: Schematic representation of material behavior exhibiting plastic
yielding [48]: elastic-plastic with strain hardening (left), elastic-
perfectly plastic (middle), and rigid-perfectly plastic (right)

In terms of the mathematical modeling of elastoplasticity, no explicit stress-
strain relation can be defined (no biunique relationship between these quantities
exists) due to the hysteresis effects. Instead, a mathematically ascertainable
functional relation can be created between the stress rate and the elastic strain
rate.

σ̇ = C
4

ε̇el (2.110)

As shown in the case of thermoelasticity, the overall strain tensor can be addi-
tively split into two constitutive parts: an elastic one εel and the partial plastic
strain tensor εpl.

ε̇ = ε̇el + ε̇pl (2.111)

Usually, the plastic yielding is mathematically characterized based on appropri-
ately defined so-called yield conditions Φpl(σ ) (i.e. flow condition, yield crite-
rion). A yield condition is a relationship among the coefficients of the stress
tensor separating the elastic domain in the stress space (which represents the
area inside the yield condition) from the region of plastic yielding. Within this
context, the plastic strain rate tensor is defined as follows:

ε̇pl = λpl
∂Φpl(σ )

∂σ
(2.112)

with the so-called plastic multiplier λpl. Consequently, the constitutive relation
(2.110) can be reformulated.

σ̇ = C
4

(
ε̇ − λpl

∂Φpl(σ )

∂σ

)
(2.113)

It is generally accepted that plastic yielding is accompanied by incompressible
(volume-preserving) deformation processes. Thus, yield conditions are usually
defined in terms of the deviatoric stress tensor.

σd = σ − 1

3
tr(σ ) I (2.114)
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One of the most widely-used and simplest models is known as von Mises yield
condition

Φpl(σ ) =

√
3

2
σd ··σd − σ0 = 0 (2.115)

with the initial yield stress σ0 and the second invariant of the stress deviator.

σd ··σd = (σd)ij(σd)ij = (σ)ij(σ)ij − 1

3
(σijδij)

2
(2.116)

A generalization of the von Mises yield condition is the Drucker-Prager model
with the material parameters a and b.

Φpl(σ ) =

√
2

3
σd ··σd − b tr(σ ) − a = 0 (2.117)

Within the context of the analysis of geomaterials, elastic-plastic material mod-
els play a specific role for soils, whereas their relevance in rock mechanics for
subsurface studies is rather minor due to the hardly observable cyclic processes.

2.5.5 Viscoelasticity

Viscoelasticity is a typical material property of amorphous substances, particu-
larly polymeric materials. If a wide variety of individual macromolecular chains
exhibit elastic material behavior under external loading, networks of macro-
molecular chains are characterized by internal friction causing rate-dependent
effects. Additionally, during mechanical loading, a certain part of strain energy
transforms into heat, which is responsible for the existence of hysteresis effects.
Relaxation (decrease of stress values at constant strain after instantaneous load-
ing) and retardation (creep—increase of strain values at constant stress after
instantaneous loading) are typical mechanical phenomena for viscoelastic ma-
terials. Both, relaxation and creep, tend towards asymptotic values, which
represent the equilibrium elastic state. In the equilibrium state of viscoelastic
materials (at sufficiently small loading rates) no hysteresis occurs. Additionally,
no hysteresis is observed at very high loading rates. In this case, the viscoelastic
material behavior can be approximated by elastic models using instantaneous
parameters.

In contrast to elastoplastic materials, viscoelastic dissipative hysteresis effects
are not necessarily accompanied by irreversible deformation processes. A certain
heat supply and/or a sufficiently long recovery period can reestablish the shape
of a viscoelastic body after mechanical loading.

There exists a wide variety of viscoelastic material models in terms of integral
equations or differential relations. A large number of them represent the gener-
alization and modification of uniaxial approaches, which are based on more or
less complex rheological models. The simplest viscoelastic rheological models
consist of one spring and one dashpot element, respectively (see Fig. 2.21).
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Figure 2.21: Mathematical modeling of reversible rate-dependent solid material
behavior. Different combinations of a spring element with a dash-
pot element [48]: Kelvin-Voigt model (left) and Maxwell model
(right)

The parallel connection of the spring and the dashpot elements is known as
Kelvin-Voigt model. It is characterized by equal displacements (and therefore
equal strain values) in both of the individual elements, whereas the stress value
of the model will be the sum of the stresses in the spring and the dashpot. The
constitutive behavior of the Kelvin-Voigt model is described by a differential
equation.

σ = k ε + η
.
ε (2.118)

If a stress σ0 is instantaneously applied to a Kelvin-Voigt model, which is held
constant thereafter, the solution of the differential equation (2.118) is given as
follows:

ε =
σ0
k

[
1 − e−kt/η

]
(2.119)

which indicates that the strain increases asymptotically to its steady-state (elas-
tic) value σ0/k. Thus, the Kelvin-Voigt model represents the typical strain
retardation, but neglecting any instantaneous strain.

The series connection of the spring and the dashpot elements is known as the
Maxwell model. Within this context, equal stress values occur in both of the
individual elements, whereas the total displacement (and therefore the strain)
of the model will be the sum of the displacements in the spring and the dashpot.
The constitutive behavior of the Maxwell model can again be described by a
differential equation.

.
ε =

1

η
σ +

1

k

.
σ (2.120)

Applying an instantaneous stress, a Maxwell element exhibits an instantaneous
elastic response characterized by the spring constant k, and a long-term viscous
response specified by the viscosity η. If the Maxwell substance is subjected to
an instantaneous jump in strain with the amplitude ε0, which is held constant
thereafter, the differential equation (2.120) can be solved closely. The solution

σ = k ε0 e
−kt/η (2.121)

indicates a stress decrease (relaxation) at constant (non-zero) strain, whereas
in case of the Maxwell model the stress relaxes to zero, simulating the behavior
of a viscoelastic fluid.
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2.5.6 Viscoplasticity

Viscoplasticity is the most general material class, and the constitutive theories
of viscoplasticity must be defined, on principle, to model all macroscopically
observable phenomena of material behavior. The viscoplastic material class
combines elements of all the other classes presented above. Micromechanical
phenomena causing viscoplastic material behavior are exceptionally complex.

Here we will focus on only one typical effect of viscoplastic material behavior
particularly relevant for geomaterials—creep processes. Although in both cases
characterizing the strain evolution at constant stress, viscoplastic creep differs
from the viscoelastic creep (retardation) mentioned above, because no asymp-
totical strain value will be reached in the viscoplastic case. A typical viscoplastic
creep curve is shown in Fig. 2.22.

Generally, for the viscoplastic creep behavior, three typical periods can be ob-
served. Whereas at all creep periods strain increases without reaching any
asymptotical value, they differ in the strain rate. The first period, called pri-
mary creep, is characterized by a decreasing creep rate (transient creep), while
for the second creep period, called secondary creep, a constant strain rate is
observed (stationary creep, steady-state creep). The period of more or less con-
stant strain rate is followed by the tertiary creep with an ever-increasing strain
rate, eventually causing mechanical failure of the structure under considera-
tion. The total reduction of the applied stresses results in a strain relaxation.
Unloading in the primary creep period is characterized by a complete strain re-
laxation (similar to viscoelatic behavior). However, if stress is removed during
the secondary creep period, residual strains remain (effect of plasticity).

Similar to elastoplasticity, a viscoplastic stress-strain constitutive relationship
begins with the relationship between stress rate and elastic strain rate given by

Figure 2.22: Schematical representation of a viscoplastic creep curve showing
the three typical periods: primary, secondary, and tertiary creep
[48]. The three periods are indicated by the Roman numerals I, II
and III, the point A indicates the instantaneous elastic strain
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(2.110). The overall strain tensor is additively decomposed into several consti-
tutive parts: apart from the partial elastic and plastic strain tensors a creep
strain tensor is introduced εc.

ε̇ = ε̇el + ε̇pl + ε̇c (2.122)

Similar to the plastic potential (yield condition), the creep behavior is mathe-
matically characterized based on appropriately defined creep potentials Φc(σ )
representing, again, relationships among the coefficients of the stress tensor.
Consequently, the creep strain rate tensor is defined as follows:

ε̇c = λc
∂Φc(σ )

∂σ
(2.123)

with the so-called creep multiplier λc. Consequently, the constitutive relation
(2.110) can be reformulated.

σ̇ = C
4

(
ε̇ − λpl

∂Φpl(σ )

∂σ
− λc

∂Φc(σ )

∂σ

)
(2.124)

In geomechanics, the long-term rock behavior during the stationary creep period
is the main focus of interest. One widely-used creep potential characterizing
secondary creep is the so-called Norton’s model

Φc(σ ) =
α

n+ 1

(√
3

2
σd ··σd

)n+1

(2.125)

with the material parameters α and n.

All of the constitutive models mentioned above are idealized approximations
of the actual material behavior. The presented models are relatively simple,
and allow a first insight into the material theory of deformable solid substances.
Some other aspects, which are relevant for rock mechanical analysis of material
behavior, could not be considered here and are subject of further studies, such as:

• Rate-dependent deformation processes in porous media are caused by the
pore pressure diffusion through the solid skeleton at a finite rate, and
intrinsic viscous properties of the matrix material. A separate exper-
imental observation of these effects is quite challenging with according
consequences to the constitutive modeling.

• Certain geomaterials show a layered structure (e.g. shale, sandstone).
Consequently, material properties of these substances depend on the di-
rection of the impact of external forces (known as anisotropic material
behavior), which has to be considered in constitutive relations.

• The damage and failure of rock plays an important role in real geopro-
cesses, and require individual consideration.
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• The analysis of wave propagation (dynamic phenomena) in geomaterials
is relevant for all kinds of seismic activities or seismic analyses.

• The design of appropriate lab tests is essential for the fundamental charac-
terization of material behavior, and the calibration of constitutive models.

2.6 Porous Medium Properties

We have considered the properties of fluid (Sect. 2.4) and solid phases (Sect. 2.5),
respectively. Many of the properties of a porous medium can be determined
based on the assumption of the local thermodynamic equilibrium allowing a su-
perposition of phase related characteristics—except of the hydraulic properties
for multiphase flow, which are discussed in more detail in this section. We begin
with the different definitions of saturation.

2.6.1 Saturation

Saturation of a fluid phase γ is defined as the volumetric fraction εγ related to
the sum of all fluid phases volumetric fractions.

Sγ =
εγ∑
γ ε

γ
(2.126)

The sum of saturations of all fluid phases must be equal to unity (Sect. 2.2.2).
Effective saturation is defined as [49]

Sγeff =
Sγ − Sγr
1− Sγr

(2.127)

Moisture content (volumetric water content) is defined as the product of porosity
and saturation.

θγ = nSγ (2.128)

Gravimetric water content is defined as

ωγ = nSγ
ρsd
ργ

(2.129)

Applying the chain rule, we can express saturation changes in following way.

dSγ =
dSγ

dpγ
dpγ (2.130)

The capillary pressure-saturation functions, as well as the relations between
relative permeability and saturation, are substantial constitutive equations re-
quired for multiphase flow. Within this context, usually algebraic expressions
are fit to the corresponding experimentally observed curves. Among the most
widely-used of these algebraic expressions are the Brooks-Corey [50] and van
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Genuchten [51] relations. If both are realized within the scientific software code
developed by the authors, the numerical results presented in this chapter are
based on Brooks-Corey’s approach.

2.6.2 Capillary Pressure and Relative Permeability

As a consequence of interfacial tension, a discontinuity in fluid pressure exists
across the interface that separates two immiscible fluids. The partial pressure
difference between two phases is denoted as capillary pressure, which is a func-
tion of saturation.

pαβc = pβ − pα = f(Sα) (2.131)

In general, capillary pressure is the difference between partial pressures of non-
wetting and wetting phases.

pc = pnw − pw = f(Sw) (2.132)

Capillary pressure is always positive: pc > 0, ∀S. It is often assumed that air
is at a constant atmospheric pressure taken as zero pg = 0. This means, the
macroscopic pressure of water in the unsaturated zone is always negative due
to suction. Capillary pressure must be measured for given soils and pairs of
fluids. In general, these experiments are conducted for equilibrium conditions
with no fluid in motion. Various authors have proposed analytical functions for
capillary pressure—saturation—relationships.

The capillary pressure/saturation relationships differ for drainage and rewetting
(imbibition) [52]. This phenomenon is called hysteresis (Fig. 2.23). Reasons for

Figure 2.23: Capillary hysteresis [8], with Sw = Sw, Sw0 = Swr , Sn = Snw,
Sn0 = Snwr
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Figure 2.24: Relative permeability functions [8] with Sw = Sw, Sw0 = Swr ,
Sn = Snw, Sn0 = Snwr , krn = knw, krw = kw

capillary pressure hysteresis are: (i) varying pore shape (ink-bottle effect), (ii)
contact angle hysteresis (raindrop effect), (iii) entrapment of non-wetting fluids,
(iv) swelling and shrinking of solid grains.

To introduce the concept of relative permeability we recall the Darcy law for
flow of multiple fluid phases through porous media, (2.72). Figure 2.24 shows
an example of relative permeabilities for both wetting and non-wetting phases.

We consider some of the most used models after van Genuchten, Haverkamp
and Brooks–Corey.

van Genuchten Model [51]

The definitions of effective saturation, capillary pressure and relative permeabil-
ity for the van Genuchten model are as follows

Seff =
Sw − Swr
1− Swr

= (1 + (αpc)
n)
m
, pc > 0 (2.133)

pc =

⎧
⎨
⎩

0 Sw > Swmax
ρwg
α (S

−1/m

eff
− 1)1/n Swr < Sw < Swmax

pcmax Sw < Swr

(2.134)

with

m = 1− 1

n
(2.135)

krel(h) =
1− (αh)n−2 [1 + (αh)n]−m

[1 + (αh)n]2m
(2.136)

Figures 2.25 and 2.26 show the capillary pressure and relative permeability
functions corresponding to the parameters given in Table 2.9, respectively.
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Figure 2.25: Capillary pressure / saturation relationship (Tuebingen experiment
2005)
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Figure 2.26: Relative permeability / saturation relationship (Tuebingen exper-
iment 2005)

Haverkamp Model [53]

The formulas for the Haverkamp model are given in terms of pressure head
h= pw/gρw and moisture content θ = nSw. The definitions of effective satura-
tion, capillary pressure and relative permeability for the Haverkamp model are
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Table 2.9: Model parameter

Swr Residual water saturation 0
Swmax Maximal water saturation 0.645
n vG parameter 4.8
α vG coefficient 320 [m−1]

Figure 2.27: Hydraulic properties of unsaturated soil [53]

as follows

θ =
α(θs − θr)

α+ |h|β + θr (2.137)

h =
(
−α
θ
(θ − θs + θr)

)1/β
(2.138)

krel(h) = Ks
A

A+ |h|β (2.139)

Figure 2.27 shows the capillary pressure saturation function corresponding to
the parameters given in Table 2.10.

Brooks & Corey Model [49]

The Brooks–Corey equations relating the saturation to the capillary pressure
are

pc = pD S
−(1/λ)
eff for pc ≥ pD (2.140)
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Table 2.10: Model parameter

θ Volumetric water (moisture) content [cm3/cm3]
θr Residual volumetric water content 0.075 [cm3/cm3]
θs Saturated volumetric water content 0.287 [cm3/cm3]
h(θ) Soil water pressure head [cm]

relative to the atmosphere
α 1.611× 106 [Pa−1]
β 3.96

where pD is usually known as entry pressure, λ is a pore-size distribution index.
Seff is a normalized wetting fluid saturation. For the case of CO2 as wetting
fluid into a saline aquifer it is defined as

Seff =
Sl − Slres

1− Slres − SCO2
res

(2.141)

where Slres is the wetting phase residual or irreducible saturation, and SCO2
res is

the nonwetting phase residual saturation. The constitutive parameters pD, λ,
Slres and SCO2

res are identified by fitting (2.140) to experimental data. Within
this context, the entry pressure is to be understood as the minimum pressure
that the nonwetting fluid must have to enter the largest pores. The relations
between the relative permeability and the saturation are given by

klrel = (Seff)
(2+3λ)/λ

(2.142)

kCO2

rel = (1− Seff)
2
(
1− (Seff)

(2+λ)/λ
)

(2.143)



www.manaraa.com

Chapter 3

Numerical Methods

by Wenqing Wang, Chan-Hee Park, Norihiro Watanabe, and Olaf Kolditz

The design, implementation and application of the object-oriented programming
(OOP) concept in the finite element analysis of multi-field problems is presented
in this chapter.

The basic idea of this concept is that the underlying governing equations of
porous media mechanics can be classified into different types of partial differ-
ential equations (PDEs). In principle, equal types of PDEs for diverse phys-
ical problems differ only in material coefficients. Local element matrices and
vectors arising fromthe finite element discretization of the PDEs are catego-
rized into several types, regardless of which physical problem they belong to
(i.e. fluid flow, mass and heat transport or deformation processes). Element
(ELE) objects are introduced to carry out the local assembly of the algebraic
equations. The object-orientation includes a strict encapsulation of geometrical
(GEO), topological (MSH), process-related (FEM) data and methods of ele-
ment objects. Geometric entities of an element such as nodes, edges, faces and
neighbors are abstracted into corresponding geometric element objects (ELE-
GEO). The relationships among these geometric entities form the topology of
element meshes (ELE-MSH). Finite element object (ELE-FEM) is presented for
the local element calculations, in which each classification type of the matrices
and vectors is computed by a unique function. These element functions are able
to deal with different element types (lines, triangles, quadrilaterals, tetrahedra,
prisms, hexhedra) by automatically choosing the related element interpolation
functions. For each process of a multi-field problem, only a single instance of the
finite element object is required. The element objects provide a flexible coding
environment for multi-field problems with different element types. Here, the

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 3, © Springer-Verlag Berlin Heidelberg 2012
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C++ implementations of the objects are given and described in detail. The
efficiency of the new element objects is demonstrated by several test cases deal-
ing with thermo-hydro-mechanical (THM) coupled problems for geotechnical
applications.

3.1 Introduction

The numerical analysis of complex multi-field problems is an important issue
for many engineering problems. A representative example is nuclear waste dis-
posal. Nuclear waste repositories are constructed in deep geologic underground.
Normally, the radioactive waste will generate heat for a long period of time with
temperatures over 100◦C. Possibly, ground water flow may be developed and
gas will be produced due to the heating of the ground water. The coupling of
thermal and hydraulic processes can cause mechanical damage in the near field
of the host rock mass. To assess the safety of the underground repositories,
the problem needs to be addressed as a thermo-hydro-mechanical (THM) cou-
pled problem [54–60]. Although some commercial tools are already available,
there is a tremendous demand for the development of fully coupled THM codes.
Existing concepts couple obtainable codes which are specialized to hydraulic,
mechanic or deformation problems. The coupling is then realized by data ex-
change between these codes. This procedure causes a rigorous restriction of the
modeling of coupling phenomena. In this work we present a finite element class
which can deal with thermal, hydraulic as well as mechanic problems.

For the programming paradigms, there are two alternatives for finite element
code design and development, i.e. procedure-oriented or object-oriented. The
former does not encapsulate data and methods manipulating the data together,
the latter does encapsulate data and methods and provides regulated commu-
nication between data and methods to perform tasks [61, 62]. The object ori-
ented paradigm facilitates the management of abstract data with its capabilities
of data encapsulation, polymorphism, and inheritance. Therefore, it provides
an easy way to develop and to maintain a code. This is one reason why more
and more researchers are shifting from using a procedure oriented to an OOP
paradigm in numerical analysis. Other reasons for its popularity include that
procedure oriented software of such complexity has to be developed by an ever
increasing number of programmer teams. OOP has significant advantages by
allowing rapid software development through capsulation, inheritance and poly-
morphism of data and methods. The advantages of object-oriented program-
ming for the development of engineering software was described in detail by [63].

Although the fundamentals of object-orientated programming (OOP) were
established in the 1960s, it remains a very important concept when facing
challenges in scientific computation, such as the solution of coupled multi-field
problems. One of the first applications of the object-oriented paradigm to fi-
nite element analysis was published in 1990 [64], where essential components of
finite element methods such as elements, nodes and materials were abstracted
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into classes. More efforts have been made by [65–71] in order to demonstrate the
advantages of OOP over the procedure oriented programming. Moreover, the
applications to many different physical problems have been investigated, such as
linear stress analysis [67–69], hypersonic shock waves [72], structural dynamics
[73], 2D Mises plasticity [74], linear static problems [75, 76], electro-magnetics
[77], solidification process [78], heat transfer as well as topological buildup [79].
A process-oriented approach for the solution of multi-field problems in porous
media is presented in [59, 80]. Numerical objects for algebraic calculations in
finite element analysis have been developed by [81–83]. In order to provide
an automatic coding environment for finite element analysis, a symbolic code
development concept is presented for the weak forms arising from the partial
differential equations [84–87].

Object design is the fundamental step in object-oriented programming. The
utilization of OOP to finite element analysis is mainly focused on three aspects:
(1) pre/post processing such as mesh generation and graphical user interface,
(2) linear algebra and (3) finite element methods. In all these aspects, the core
object is the element object. The design of element objects is associated with
other objects corresponding to material properties, numerical methods, local
geometry and topology of element etc. Specific material objects are described
in most of references cited above.

In this part we present the design, implementation and application of object-
orientation in finite element analysis for multi-physics problems. The develop-
ment of a universal object for local finite element calculation and assembly is
capable of coping with different kinds of physical problems (i.e. different types
of partial differential equations) and is, in particular, designed for strongly cou-
pled problems. Additionally, object-orientation is used in description of mesh
topology for the global assembly of system equations. The description of the
programming semantics of these objects is given in C++. All the develop-
ments of this work are conducted within the framework of the scientific software
project OGS (http://www.opengeosys.net). The OO-FEM concept is verified
by numerous test cases dealing with thermo-hydro-mechanical (THM) coupled
problems in geotechnical as well as hydrological applications (Parts II and III
of this book.)

3.2 Object-Orientation in Finite Element

Analysis

Almost all numerical methods eventually have to deal with the solution of alge-
braic equation systems. The basic algorithms for the discretization of partial dif-
ferential equations (PDEs) resulting from the initial-boundary-value-problems
(IBVPs) of continuum mechanics can be generalized in principle as follows: time
discretization, calculation of problem-specific node (finite difference method:
FDM), element (finite element method: FEM), volume (finite volume method:

http://www.opengeosys.net
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FVM) contributions, incorporating initial and boundary conditions, assembling
and solving the resulting equation system. For non-linear problems, iteration
schemes, such as Picard or Newton methods, have to be used.

The general solution algorithm for the finite element method is given in
Table 3.1.

The implementation of the general solution algorithm for multi-field IBVPs
according to Table 3.1 is illustrated in Fig. 3.1. The time loop represents time
discretization. Within the time loop, specified physical processes (e.g. flow,
transport, deformation) are solved using the finite element method (left box).

Table 3.1: General solution procedure of the finite element method

1. Domain discretization (i.e. mesh generation): Creation of individual geo-
metric elements (e.g. triangles, tetrahedra) and their topological relation-
ships (mesh topology).

2. Local element assembly: Depending on PDE type (Sect. 3.3) all element
matrices and vectors have to be computed. The element integration re-
quires geometric operations such as interpolation with shape functions,
calculation of inverse Jacobians and determinants. Additionally material
functions have to be computed in Gauss points. Material functions can
depend on field variables.

• Geometric element operations (shape functions, Jacobian),

• Material parameter calculation at Gauss points,

3. Global assembly of the algebraic equation Ax = b: The local element en-
tries are assembled into the global system matrixA and global RHS vector
b. The system of equations is established after incorporating boundary
conditions and source/sink terms.

• Assembly of system matrix A (including incorporation of boundary
conditions),

• Assembly of RHS vector b (including incorporation of source/sink
terms),

4. Solving the system equations,

5. Iterative methods to handle non-linearities,

6. Iterative methods to handle couplings (partitioned and monolithic
schemes).
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Figure 3.1: Implementation of solution algorithm

The solution procedure of each process is unique (middle box). The basic part
is the calculation and assembly of element contribution (right box).

Based on above described general solution algorithm for multi-field IBVPs, the
fundamental concept of object-orientation in finite element analysis is the gen-
eralization of

• Process (PCS) types (Sect. 3.2.1),

• Equation (PDE) types (Sect. 3.2.2),

• Element (ELE) types (Sect. 3.2.3).

3.2.1 Process (PCS) Types

The central idea behind object-orientation of processes is that the basic steps of
the solution procedure: calculation of element contributions, assembly of equa-
tion system (including treatment of boundary conditions and source terms),
solution of the equations system, linearization methods and calculation of sec-
ondary variables, are independent of the specific problem (e.g. flow, transport,
deformation processes) [80, 88]. The process (PCS) class provides basic methods
in order to solve a PDE in a very general way. The central part of the PCS object
is the member function PCS::Execute() (Fig. 3.1, middle box) conducting these
basic steps. Specific properties of the mechanical problem, such as PDE type,
primary and secondary variables and material functions, are assigned during
process configuration (member function PCS::Config()). In order to configure
PCS instances we take advantage of polymorphism.

Figure 3.2 illustrates the object-orientation of PCS types for the solution of
IBVPs. The PCS object was designed to manage the complete solution algo-
rithm in order to build the global equation system (EQS). In fact, the PCS object
’only’ administrates references to geometric (GEO) objects (points, polylines,
surfaces, volumes); MSH objects (mesh nodes, elements and mesh topology),
node-related data such as initial (IC) and boundary (BC) conditions as well as
source terms (ST); material data of porous media (fluid (MFP), solid (MSP),
medium (MMP) and chemical (MCP) properties); parameters of the different
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Figure 3.2: Structure of the process (PCS) object

numerical methods (NUM). PCS instances have ’only’ pointers to the related
objects as members. Objects IC, BC and ST have pointers to object GEO to
specify geometrical entities, which are managed by PCS to find element nodes on
them. The values in IC and BC and ST are assigned to element nodes found be
their GEO members. Object GEO also play a key role in the pre/post-process
of the data of the finite element method.

3.2.2 PDE Types

When dealing with IBVPs in porous media mechanics, such as fluid flow, mass
and heat transport, deformation can be categorized into elliptic, parabolic,
hyperbolic or mixed equation types.

As an example to explain the generalization of PDE types, we illustrate the
treatment of Laplace terms, which appear in flow, transport as well as deforma-
tion processes. In Fig. 3.3 the evaluation of finite element matrices for Laplace
terms, i.e. D∂2/∂x2 is given, where D is a problem-specific material tensor. The
special part of diffusion terms is the calculation of second order space derivatives.
The second line of the equation in Fig. 3.3 represents the numerical integration
of the matrix being transformaed into reference coordinates. From the view
point of object-orientation we are faced with the following operations: tensor
coordinate transformation (T), Jacobian (J), integration (

∫
) and computation

of material properties (D, e.g. diffusivity, conductivity tensor). The latter is
the only problem-specific.

Ke =

∫

Ωe

∇ND(∇N)TdΩ (3.1)

=

no gp∑
gp=1

∫

Ωr

wgp
[∇ND(∇N)Tdet J

] |gpdΩ (3.2)
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void CFiniteElement::CalcLaplace()

{
// Loop over Gauss points

for (gp = 0; gp < no gp; gp++)

{
GaussData(); // Integration points and weights

Jacobian(); // det J, J−1

GradShapefct(); // ∇N
LaplaceMATFunction(); // Material parameters, D

for (i=0; i<nnodes; i++) // Loop over element nodes

for (j = 0; j < nnodes; j++)

{
if(j>i) continue; // Symmetry

for (k = 0; k < ele dim; k++)

for(l=0; l<ele dim; l++)

(∗Laplace)(i,j) += fkt ∗ dshapefct[k∗nnodes+i]
∗ mat[ele dim∗k+l]
∗ dshapefct[l∗nnodes+j];

}
}

}

Figure 3.3: Finite element Laplace matrix and implementation

Figure 3.3 shows the implementation of the Laplace term calculation, in which
Ωr is the domain by the reference element. The CalcLaplace() member func-
tion of the finite element class works for different processes with different ma-
terial functions (Fig. 3.4) and geometric element types. A short description is
given in the table below.

Code Description

gp Gauss integration points
GaussData() Calculation of Gauss weights
Jacobian() Calculation of Jacobian determinant and inverse
GradShapeFunction() Calculation of shape function derivatives
LaplaceMATFunction() Calculation of material coefficients
(*Laplace)(i,j) Finite element matrix

3.2.3 Element (ELE) Types

The basic concept we apply is that: element data, such as geometrical and
topological properties, as well as operations of elements, such as element matrix
calculations and treatment of boundary conditions, can be generalized.
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void CFiniteElementPCS::LaplaceMATFunction()

{
// Calculate conductivity tensor D for Laplacian

switch(PcsType){
case L: // Liquid flow

case U: // Unconfined flow

case G: // Gas flow

case T: // Two-phase flow

case C: // Componental flow

case H: // Heat transport

case M: // Mass transport

case O: // Overland flow

case R: // Richard flow

}
}

Figure 3.4: Implementation of process dependent material functions

Figure 3.5: Structure of element object

The element object is the fundamental entity in both PDE and element types.
In Fig. 3.5 the structure of the element object is illustrated. The element has
two kinds of properties, connected geometry and PDE types.

Element geometry includes the geometric type (line, triangle, quad, tetrahedron,
prism, hexahedron), node coordinates, edges, faces and volume. Coordinate
transformation functionalities are considered as geometric element properties.
Element topology is defined by element neighbor relationships. Patch properties
are available for finite volume approaches and flux calculations. The elements
form the mesh topology. Different geometric element types can be combined
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(Fig. 3.5) together to establish a mesh. Additionally, elements can be assigned
to different meshes.

Depending on PDE type (elliptic, parabolic, hyperbolic, mixed), different first
or second order differential terms have to be evaluated (∂/∂t, ∂/∂x, ∂2/∂t2,
∂2/∂x2). These differential terms are categorized in corresponding FE matrix
types (see Sect. 3.3), mass matrix, Laplacian matrix, tangential matrix and
coupling matrices. An obvious advantage of this element concept is that, de-
pending on the geometric element type, interpolations (shape functions) and
derivations as well as tensor operations and Gaussian integrations are conducted
automatically in a correct way (see Sect. 3.4.2). For material tensor properties
in 1D, 2D or 3D (A,B,C,D(x) in Fig. 3.5), the correct matrix multiplications
are conducted automatically. Material functions (A,B,C,D(u) in Fig. 3.5) are
evaluated accordingly at corresponding Gaussian points of the selected element.

For the sake of object-orientation for numerical methods a so-called process
(PCS) object was designed, implemented ([80], Sect. 3.2.1) and successfully
applied to different numerical methods (FEM: [59], FDM: [89], FVM: [90]).

3.3 General Finite Element Formulations

The method of weighted residuals is applied to derive the weak formulation of
the balance equations given in Sect. 2.3.

Assume Vn ⊂ H1
Γ
(Ω)n is the test function space. For all w ∈ V1, we have the

weak form of the mass balance equation (2.59) as

∫

Ω

(
nSγ

∂ργR

∂t
+ nSγvγs · ∇ργR + nργR

∂Sγ

∂t
+ nργRvγs · ∇Sγ+

∇ · (ργnSγvγs) + SγργR∇ · u̇s − qγ
)
w dΩ = 0 (3.3)

Applying integration by parts, divergence terms can be rewritten as

∫

Ω

∇ ·AωdΩ =

∫

Ω

A · ∇ω dΩ +

∫

Γ

A · nω dΓ (3.4)

Under the same assumption, the weak form of heat balance equation (2.78) can
be obtained as

∫

Ω

∑
γ

(εαραcαp )
∂T

∂t
w dΩ−

∫

Ω

j th · ∇ω dΩ +

∫

Γ

j th · nω dΓ

−
∫

Ω

QγTw dΩ = 0 (3.5)

Taking into account nonlinearity, the weak form of the momentum balance
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equation (2.100) must be fulfilled throughout the load history, i.e.,

∫

Ω

1

2

(
σeff −

∑
γ

SγpγI

)
:
(∇w + (∇w)T

)
dΩ

+

∫

Ω

wT · ρg dΩ−
∫

Γ

wT · t dΓ = 0 (3.6)

for all w ∈ Vn, n = 2, 3. In principle, the vector form of stress and strain
tensor are used to developing the system equation of the discretized weak form
of (3.6). Under this form, the constitutive law for the effective stress tensor can
be expressed as

σeff = C ε

with the corresponding strain-displacement relationship

ε = Lus

where L is an differential operator.

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.7)

We use the Galerkin finite element method to solve the weak forms of balance
equations above. All variables are approximated by admissible finite element
functions in the Taylor-Hood finite element space, i.e, low order interpolation
N1 ∈ R

n for pressure and temperature variables and high order interpolation
N2 ∈ R

n for displacement, respectively. As a result of the finite element dis-
cretization of the weak forms (3.4), (3.5) and (3.6), we obtain local matrices
and vectors for the global system equations [16]. Element matrices and vectors
can be classified into following types (Table 3.2)

Table 3.2: Matrix and vector types

Type Name Equations∫
ΩN

T
1 MN1 dΩ Mass matrix (3.4),(3.5)∫

Ω
(N1)

TM∇N1 dΩ Advection matrix (3.5)∫
Ω
(∇N1)

TM∇N1 dΩ Laplace matrix (3.4),(3.5)∫
ΩB

TMB dΩ Tangential matrix (3.6)∫
ΩMBTmN1 dΩ Displacement coupling matrix (3.4)∫
Ω
MNT

1 mTB dΩ Pressure coupling matrix (3.6)∫
Ω
QN1 dΩ ,

∫
Ω
QN2 dΩ Source term vector (3.4),(3.5),(3.6)∫

ΓqN
Γ dΓ Neumann vector (3.4),(3.5),(3.6)
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where M are process-specific material functions, B = LN2 is so called strain-
displacement matrix, m = (1, 1, 1, 0, 0, 0)T is mapping vector. Based on this
classification of matrix and vector types the finite element object is designed
(Sect. 3.4.2).

3.4 Element Objects: ELE

In this section, the details of the implementation of the element objects are
described. The relationship of element objects is shown in Fig. 3.6. For the
simulation of each process in a coupled problem or each single problem, only an
instance of mesh object (ELE-MSH) and an instance of finite element object are
required. Geometric element object (ELE-GEO) manufactures the foundation
of this concept (Sect. 3.4.1). Meshes (ELE-MSH) are formed based from geo-
metric element entities (Sect. 3.4.4). Finite element object (ELE-FEM) basically
compute the finite element matrices for different PDE types and geometric ele-
ment types automatically using the corresponding shape functions (Sect. 3.4.2).
ELE-PCS object assembles the equation systems for the problem type, i.e. THM
coupled ELE-PCS object problems for porous media (Sect. 3.4.3). To this pur-
pose, objects ELE-PCS and ELE-FEM have a pointer member pointing to each
other. When an instance of ELE-PCS object for a process in a coupled problem
or a single problem is constructed, an instance of ELE-FEM object is created
accordingly. During the construction of the instance of ELE-FEM object, the
degree of freedom of the problem is initialize by the type the ELE-PCS instance,
i.e. the specific problem. This means only one instance of ELE-PCS and one
instance of ELE-FEM have to been created for each process in a coupled prob-
lems or for each single problem. Moreover, ELE-FEM has a pointer member
pointing to interpolation function. This member is initialized by the messages
from the instance of ELE-PCS and each instance of ELE-GEO for each finite
element during the local assembly. Such initialization guarantees that interpo-
lation function and its derivatives are set properly for each geometric element
for a process or a problem.

For an instance of ELE-FEM object, its pointer type members of the interpola-
tion functions and its derivative functions are initialized by both of the process
type and the element geometry type. Moreover, ELE-FEM object has a pointer
type member to ELE-GEO object as well. When local assembly comes to an
element, or an instance of ELE-GEO, the ELE-FEM instance have the ELE-
GEO pointer point to the element and initialized its numerical methods such as

ELE-GEO

ELE-MSH

ELE-FEM

ELE-PCS

Geometrical element Finite element

Figure 3.6: Relationship of element objects
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interpolation, Guass integration accordingly. This is very helpful for the finite
element analysis of consolidation in porous media, in which, the Talyor-Hood
finite element spaces, i.e. linear interpolation for flow process and quadratic
interpolation for deformation process, is required for stability reason[54]. In
default, the order of interpolation of each element is linear and the nodes of an
element are its geometrical vertices. If the high order interpolation is required
by a process or a problem, additional nodes are created for each instance of
ELE-FEM during the construction of the mesh topology. The idea of this con-
cept is, that specific process-related information is introduced as late as possible
to keep the software concept as flexible as possible.

3.4.1 Geometric Element Object: ELE-GEO

As described in Sect. 3.2, the first step of finite element analysis is the domain
discretization. As a result we obtain element meshes. Hereafter, we refer to a
mesh element as the geometric element object ELE-GEO. The intrinsic properties
of a geometric element object are: nodes, edges, faces, volume and neighbors
(Fig. 3.7). Neighbor relationships connect geometric element objects within a
mesh and, therefore, represent topological properties.

We design the following element property classes to encapsulate all geometric
and topological element information.

• CCore for CORE object,

• CNode for NODE object,

• CEdge for EDGE object,

• CElem for ELEM object.

Figure 3.7: Mesh element
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class CCore

{
protected: // Properties

long index; // global element index

char position; // position indicator

bool status; // status in usage

int order; // order of interpolation

public: // Methods

// Set members

void SetIndex(const long index) {index = index;}
void SetPosition(const char BC type) {boundary = BC type;}
void SetStatus(const bool status) {status = status;}
void SetOrder(const int order) {order = order;}
// Get members

long GetIndex() const {return index;}
char GetPosition() const {return position;}
bool GetStatus() const {return status;}
int GetOrder() const {return order;}
// Construction

CCore(const int id); // constructor

virtual ~CCore(); // destructor

// Operators

virtual void operator = (const CCore & g) {}
virtual bool operator == (const CCore & g) {return false;}
// Output

virtual void output(ostream& os=cout) const {};
};

Figure 3.8: CCore implementation for basic geometric element properties and
methods

Faces and neighbors belong to ELEM object. Indeed, edges could be also assigned
to the ELEM object. However, we consider an edge as an individual entity for two
reasons. First, some numerical methods, such as mixed finite elements, require
edges as a basic geometric property as nodes for the Galerkin FEM. Second,
edges are frequently used as basic properties in the automatic mesh generation.
As NODE, EDGE and ELEM objects share common data and methods, we abstract
these into the CCore class as a base class (Fig. 3.8).

Core Object: CORE–Geometric Element Base Class

Common data of a geometric element are: global element index; position indica-
tor within the whole domain, which indicates whether the geometric element is
inside the domain or on the domain surface; status flag, which indicates whether
this element is marked for some usage. Assign = as well as identity operators
== are virtually defined. The C++ implementation of the CCore base class is
given in Fig. 3.9.
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Figure 3.9: Core of mesh element

Figure 3.10: Node of element object

Member char position is used to determine the location of the geometrical
entity within a domain, e.g. it is inside the domain or on the boundary of the
domain.

Classes CNode, CEdge and CElem are directly derived from the base class CCore.
Assign = as well as the identity operator == are overloaded in these objects.
With such overloading operators, passing data of an class instance, A, to another
class instance, B, can be simply realized with the instruction A=B. Whether two
instances are identical can be checked by the instruction if(A==B).

Node Object: NODE

The node object (NODE) is derived from the CCore class. In addition, the CNode
class provides the geometrical position of an element in real space, i.e. the
coordinates of element nodes (Fig. 3.10).

Mesh elements having this node in common are determined immediately af-
ter mesh data is generated. Elements sharing this node are stored in vector
ConnectedElements. This node-element relationship is very important infor-
mation of the mesh topology. It is required e.g. for extrapolation of Gauss point
values to node values or for projecting element properties to nodes. Using the
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ConnectedElements vector, the calculation of mesh topology can be enormously
accelerated. For extrapolation of gauss point values to nodes, we only need to
know the size of the vector, i.e. how many element connected to the nodes.
Since extrapolation takes place element-wise, node values are accumulated from
the contribution of its connected elements, we have to average the accumulated
node value by dividing it with the number of connected elements after extrap-
olation is finished. Member vector ConnectedNodes stores indices of all nodes
of connected elements and it is used together with the degree of freedom of the
process/problem to store indices of all nodes of connected elements and it can
be used together with the degree of freedom of the process/problem to create
the sparse matrix of the system equations to create the sparse matrix of the
system equations. The memory of ConnectedNodes is released as soon as the
sparse matrix is created. Classes CEdge and CElem are set as friend classes of
CNode so that they can access to CNode private members directly. The C++
implementation of class CNode is given in Fig. 3.11.

class CNode:public CCore

{
private: // Members

double coordinate[3];

Vector<long> ConnectedElements;

mboxVector<long> ConnectedNodes;

public:

// Construction

Node(const int Index, const double x,

const double y, const double z=0.0);

Node() {}
~Node() {ConnectedElements.resize(0); ConnectedNodes.resize(0);}
// Operators

void operator = (const Node& n);

bool operator == (const Node & n);

// Set members

void SetX(const double argX) { coordinate[0] = argX;}
void SetY(const double argY) { coordinate[1] = argY;}
void SetZ(const double argZ) { coordinate[2] = argZ;}
void SetCoordinates(const double∗ argCoord);

// Get members

double GetX() const {return coordinate[0];}
double GetY() const {return coordinate[1];}
double GetZ() const {return coordinate[2];}
int GetNumberOfConnectedElements() const {return

ConnectedElements.size(); }
mboxint GetNumberOfConnectedNodes() const {return

ConnectedNodes.size(); }
// Output

void Write(ostream& os=cout) const;

private: // Class relations

friend class CEdge;

friend class CElem;

};

Figure 3.11: CNode implementation
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Figure 3.12: Edge of mesh element

class CEdge:public CCore
{

private: // Members
vec<CNode∗ > nodes of edges;

public: // Member functions
// Construction
Edge(const int Index, bool quadr=false);
~Edge();
// Operators
void operator = (CEdge& edg);
bool operator == (CEdge& edg);
// Member access
void SetNodes( vec<CNode∗ >& Nodes)
{ for(int i=0; i<(int)Nodes.Size(); i++) Nodes[i] = nodes of edges[i]; }
void SetNodes( vec<CNode∗ >& Nodes) const { Nodes = nodes of edges;}
// Output
void Write(ostream& osm=cout) const;

private: // Class relations
Vector<CNode∗ > nodes of edges;
friend class CElem;

};

Figure 3.13: CEdge implementation

Instances of NODE object are stored in a global vector:
vector<CNode*>node vector.

Edge Object: EDGE

The edge object (EDGE) is derived from the CCore class. Edges are used to build
up the frame of a geometric element object (Fig. 3.12). It is sufficient to use
two nodes to form a geometric edge. However, for higher order finite elements,
more points are required along an edge. Therefore, we use a vector of CNode
pointers as a class member for edge nodes (see Fig. 3.12). In case of quadratic
finite elements, the first two nodes are element corner nodes and the last one is
the middle point of this edge.

The C++ implementation of the CEdge class is given in Fig. 3.13.
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Vector is a ”clone” of the standard C++ vector template, as template Vector-

<class V> class V with less memory consuming but sufficient and efficient
functionality of vector algebraic calculation.

For node based finite elements (i.e. linear interpolation), edges are only used
to compute the topological mesh structure and to process Dirichlet boundary
conditions and source terms. For instance, if a Dirichlet boundary condition
of a PDE is assigned by a polyline, edges of elements on the polyline will be
found and the Gauss integration will be performed on these edges to produce
node values of nodes of these edges. They are not needed to be stored for the
later computations anymore. On the other hand, mixed finite elements or higher
order finite elements require edges through all computations. In this case we save
all edges of a mesh in a standard C++ vector: vector<CEdge*>egde vector.

Element Object: ELEM

The element object (ELEM) is also derived from the CCore class. ELEM repre-
sents an individual element of a mesh. Node and edge objects are employed to
construct the element object. An abstract mesh element object is designed for
different geometric element types, i.e. lines, triangles, quadrilaterals, tetrahe-
dra, triangle based prisms, hexahedra (Table 3.3, Fig. 3.15). These geometric
element types are defined by an ID, i.e, integer numbers represent element type.
The C++ implementation of class CElem is given in Fig. 3.14.

Basic members of the element object are identification, geometrical as well as
topological properties and mesh relationships. Element ID (index) is inherited
from the CORE object. Dimension and volume are basic geometric members.
Depending on the geometric type of an element (ele type), the following geo-
metrical and topological properties are specified:

Element nodes and edges are kept in the following two member vectors

Vector<CNode∗> nodes;

Table 3.3: Basic topology information of an geometrical element

Geometric type ele type nnodes nnodesHQ nfaces nedges

Line 1 2 3
Quadrilateral 2 4 9 4 4
Hexehedron 3 8 20 6 12
Triangle 4 3 6 3 3
Tetrahedron 5 4 10 4 6
Prism 6 6 15 5 9
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class CElement:public CCore
{

private: // Members
// ID
CElem∗ owner;
int ele type; // Element type
// Geometrical properties
int dim; // dimension of element
double volume; // element volume
// Topological properties
int nnodes; // number of element corner nodes
int nnodesHQ; // number of element nodes for quadratic interpolation
Vector<CNode∗ > nodes;
int nedges; // number of edges
Vector<CEdge∗ > edges;
int nfaces; // number of faces
// Mesh topology
int sub domain;
Vector<CElem∗ > neighbors;
Vector<CElem∗ > sons;
Vector<long> nodes index;

}

Figure 3.14: CElem implementation

3D Elements:
Tedrahedra
Hexahedra
Prisms

2D elements as facces
 of 3D elements

Triangles
Quadrilaterals

1D elements as edges

2D Elements:

Figure 3.15: Geometric elements types

and

Vector<CEdge∗> edges;

3.4.2 Finite Element Object: ELE-FEM

In this section we present the design of the finite element object, i.e. properties
and methods, which are required to conduct the finite element analysis. In
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particular, we discuss the implementation of steps 2 and 3 described in Table 3.1,
i.e., local element assembly and global assembly of the system equation.

According to the principles of object-oriented programming, we encapsulate
common data and functionalities of finite elements into a base class. There
are two general tasks of the finite element object. First, local finite element
calculations and, second, contributions of the element to the global equation
system. Afterwards, we derive specific finite element objects for different prob-
lem types (i.e. PDE types) in the framework of THM porous media mechanics
(see Fig. 3.5).

Finite element base class: Local element calculations require the selection of
specific interpolation functions as well as their derivatives at integration points
corresponding to different element types. Therefore, element interpolation func-
tions are regarded as basic items of the finite element object. These interpolation
functions have two arguments: first, values of shape functions or the derivative
of shape functions; second, reference points, e.g. Gauss points. Therefore, for
each kind of geometric element type, we have four functions associated with
element interpolation as

void ShapeFunctionXXXX(double*,double*);

void ShapeFunctionHQXXXX(double*,double*);

void GradShapeFunctionXXXX(double*,double*);

void GradShapeFunctionHQXXXX(double*,double*);

where XXXX is specifying the different geometric element types. ShapeFunction-
XXXX provides linear interpolation functionsN1, whereas ShapeFunctionHQXXXX
gives quadratic interpolation functions N2, mentioned in Sect. 3.3. GradShape-
FunctionXXXX and GradShapeFunctionHQXXXX offer the derivatives of the cor-
responding interpolation functions N1 and N2, respectively. Interpolation func-
tions for all kinds of element types are declared as global functions. The function
pointer void (*VoidFuncDXCDX) (double*,double*) is defined to point to the
addresses of the global interpolation functions. The C++ implementation of the
finite element base class CElement is given in Fig. 3.16.

Member variable, m ele geo, is a pointer to the corresponding geometric ele-
ment object CElem, which links the finite element object to geometry. When
the local assembly takes place for an element, the instance of this element is ob-
tained by finite element object with its member function, void Config(CElem

m ele geo). With this, the finite element object has all geometrical and topo-
logical properties such as geometric type, coordinate nodes and neighbors for
local element calculation.

Different weak forms arise from the different governing equations of flow prob-
lem, heat transport problem and mechanical problem ((3.4)–(3.6)). This re-
quires different element level computations for the specific problem. Since the
root finite element object provides the basic numerical functionality, we can use
this object directly for the benefit of the polymorphism mechanism of object
oriented programming.
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class CFiniteElement {
protected: // Member data

CElem* m_ele_geo; // Instance of geometric element
int order; //Order of shape functions
int n_gauss_points; // Number of Gauss points
int n_gauss; // Number of sample points for Gauss integration
mutable double unit[4]; // Local element coordinates
double* Jacobian; // Jacobian matrix
double* invJacobian; // Inverse Jacobian matrix
double* shape_fct; // Linear shape function values at Gauss points
double* shape_fct_HQ; // Quadratic shape function values at Gauss points
double* d_shape_fct; // Linear shape function derivative values at Gauss points
double* d_shape_fct_HQ; // Quadratic shape function derivative values at

// Gauss points
public: // Member functions

CFiniteElement(const int order=1);
virtual ~CFiniteElement();
virtual void Config(CElem* m_ele_geo);
virtual void ConfigNumerics(const int type);
double GetGaussData(const int gp,int& gp_r,int& gp_s,int& gp_t)
virtual void ComputeShapeFct(const int order);
virtual void ComputeGradShapeFct(const int order);
virtual double ComputeJacobian(const int order);
virtual void RealCoordinates(double*xyz);
virtual void RefCoordinates(double*xyz);
virtual void LocalAssembly();
virtual void FaceIntegration();

protected: // Member functions
VoidFuncDXCDX ShapeFunction; // Prototype for linear shape functions
VoidFuncDXCDX ShapeFunctionHQ; // Prototype for quadratic shape functions
VoidFuncDXCDX GradShapeFunction; // Prototype for linear shape function derivatives
VoidFuncDXCDX GradShapeFunctionHQ; // Prototype for quadratic shape

// function derivatives
}

Figure 3.16: Finite element base class

3.4.3 Process Related Finite Element Objects: ELE-PCS

Only at this stage (the last part of the element object concept) do we introduce
process-related data. The element object CFiniteElementPCS should work for
all processes: fluid flow, heat transport, deformation and reaction processes
regardless of PDE type and type of unknown field functions (scalar or vector
quantities).

The finite element object ELE-PCS has two tasks: First, calculation of element
matrices, which are formed by shape functions (N1,∇N1) and process-specific
material properties (MAT objects) (Step 2 in Table 3.1). Second, to provide local
element contributions to the global equation system: Aijxi = bj , where i, j are
global node indices (Step 3 in Table 3.1).

The C++ implementation of the process-related finite element object ELE-PCS
is given in Fig. 3.17.

• ELE-FEM relation: Process related instances are derived from the finite
element base class CFiniteElement. Therefore, they inherit all necessary
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class CFiniteElementPCS::public CFiniteElement {

private: // Member data

// PCS relation

CProcess* m_pcs;

// MAT relations

CFluidProperties* m_mfp;

CSolidProperties* m_mfp;

CMediumProperties* m_mmp;

// Element matrices

SymMatrix* MassMatrix;

SymMatrix* LaplaceMatrix;

SymMatrix* PressureCouplingMatrix;

Matrix* AdvectionMatrix;

Matrix* StrainMatrix;

Matrix* StrainCouplingMatrix;

...

Matrix* LHSMatrix;

Vec* RHSVector;

public: // Member functions

// Construction

CFiniteElementPCS(CProcess* m_pcs);

~CFiniteElementPCS();

// MAT functions

void SetMaterial();

inline void CalcMassMatrixCoefficient();

inline void CalcAdvectionMatrixCoefficient();

inline void CalcLaplaceMatrixCoefficient();

inline void CalcStrainMatrixCoefficient();

inline void CalcStrainCouplingMatrixCoefficient();

inline void CalcPressureCouplingMatrixCoefficient();

// Element matrices

inline double InterpolateGPValues(double*);

// Interpolation at Gauss points

void SetMemory();

void CalcMassMatrix();

void CalcLumpedMassMatrix();

void CalcAdvectionMatrix();

void CalcLaplaceMatrix();

void CalcStrainMatrix();

void CalcStrainCouplingMatrix();

void CalcPressureCouplingMatrix();

void CalcGravityVector();

void LocalAssembly(); // LHS element contribution

...

// Element contribution to global equation system

void GlobalAssembly(); // LHS matrix contribution

}

Figure 3.17: Process related finite element class

geometric and topological data from ELE-GEO, ELE-FEM, and ELE-
MSH objects.

• PCS relation: Process related finite element objects need a reference to
the related PCS instance, which is conducted by the ELE-PCS class con-
structor.
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• MAT relations: References to all MAT objects, i.e. CFluidProperties*

m mfp, CSolidProperties* m msp and CMediumProperties* m mmp, are
used to get the required material parameters of the specified process
(CProcess* m pcs). Member function SetMaterial() prepares the refer-
ences to process-specific material properties to accelerate later computa-
tions. This insures that the ELE-FEM object works properly for all THM
processes, i.e. fluid flow, heat transport and deformation.

• Local assembly: Element matrices: Based on geometric and finite element
base data (ELE-FEM relation) and the references to material data (PCS-
MAT relation) the process-specific element matrices can be calculated
now (CalcXXXXMatrix()). Member functions are used to calculate the
material coefficients in the Gauss integration points
(CalcXXXXMatrixCoefficients()). They are defined as inline types to
improve the computation efficiency. Local element matrices and vectors
are stored in the corresponding symmetric/unsymmetric matrix and vector
constructs.

• Global assembly: Equation system: The global assembly is conducted by
the Assemble() function. It updates the individual element contributions
in the equation system, i.e. global left-hand-side (LHS) matrix (Aij) and
global right-hand-side (RHS) vector (bj). To this purpose the assembly
functions needs the relations between local element node and global mesh
node numbers, which is provided by the ELE-MSH topology (Sect. 3.4.4).
Assemble() functions are available for different PDE types. How the
Assemble() is implemented for a parabolic PDE is shown in Fig. 3.18.

3.4.4 Element-Mesh Relations: ELE-MSH

From Fig. 3.6 it can be seen, that element-mesh relations have multiple functions
in the element concept, e.g.

void CFiniteElementPCS::AssembleParabolicPDEType()

{

// MAT relations

SetMaterial();

// Calculation and assembly of element matrices

CalcMassMatrix();

CalcLaplaceMatrix();

CalcStrainCouplingMatrix();

// Calculation and assembly of RHS vector

CalcRHSVector();

}

Figure 3.18: Linear element assemble function
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• ELE-GEO relation: mesh topology, neighbor relationships of geometric
elements, element connectivity, incorporation of boundary conditions,

• ELE-FEM relation: coordinate transformation between local element and
global coordinates,

• ELE-PCS relation: local element nodes and node index in the global equa-
tion system, material domains.

ELE-GEO Relation

Apart from the individual/intrinsic element properties, the ELEM object con-
tains information about mesh topology, i.e. how this element is emplaced in the
element mesh. For instance, the (sub domain) index indicates the part of the
domain to which this element belongs. This number is used e.g. to distinguish
elements in different areas of the domain with different material properties.
Neighbor relationships of geometric elements are important topological proper-
ties of an element mesh. Neighbors of an element are all those elements adjacent
to the faces of the element. Since the definition of ELEM object provides neces-
sary functionality of different geometric element types, we use pointers to ELEM

object itself to recode neighbors as

Vector<CElem∗> neighbors;

As an example Fig. 3.19 illustrates the arrangement of neighbor relationships
in 2D space, in which quadrilateral element A has three neighbor elements
adjacent to its faces (i.e. edges in 2D) 1, 2 and 3. Neighbors 1 and 2 are
triangle elements, while neighbor 3 is a quadrilateral element. Face 4 is on the
domain boundary, which is not shared by any other element. Vector member,
neighbors, is initialized with size of 4 and assigned during mesh construction.
The first three entries are assigned with pointers to neighbors 1, 2 and 3. The

Face 4 BOUNDARY

DOMAIN

Face 1

neighbour

neighbour

neighbour

A

Face 2 

Face 3 

Figure 3.19: Definition of element neighbors
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last entry of the vector is filled with a pointer to a surface (Face 4), which is
an instance of ELEM object configured for a line element. The boundary type
position of this instance is set as ’B’. The coding of the element neighboring
process is given below:

neighbors[0] = (CElem*) Neighbour1;

neighbors[1] = (CElem*) Neighbour2;

neighbors[2] = (CElem*) Neighbour3;

neighbors[3] = (CElem*) Face4;

Face4->position = ’B’; // on domain boundary

Face4->owner = this; // this element

The above neighbor vector is a member of element, i.e., ELEM, object.

ELE-FEM Relation

The ELE-FEM association concerns coordinate transformation between local el-
ements and global coordinates. Depending on the geometric and numerical type
of a finite element, related shape functions and their derivatives are available
(Sect. 3.4.2). Jacobian calculations are another typical ELE-FEM method.

ELE-PCS Relation

Subdomain properties of elements are used to describe heterogeneity, i.e. lo-
cal variation of material properties for different problems. Element neighbor
relationships are essential data for constructing the mesh and determine the
propagation orientation of discontinuities in failure analysis (Sect. 9.2.2). More-
over, the proposed element concept allows the assignment of different processes
(PCS objects) and meshes (MSH objects).

3.5 Parallel Computing and Automatic Control
for Time Stepping

The present finite element object and geometric element objects have already
been extended to the extended finite method [91]. In addition to the process
object, finite element object and geometric element objects, we need to provide
more objects to manage the time discretization, assembly and solving of the
global system of equations and so on. Since the stiffness matrix of the global
system of equations by the finite element method is a sparse matrix, we designed
and implemented a sparse object and a linear solver object [92]. The sparse
object serves to keep the stiffness matrix and to perform the matrix algebraic
calculations for both sequential and parallel computing [93]. The sparse object
determines the sparse pattern of the stiffness matrix by the topology of the whole
domain mesh for sequential simulations or by the topology of the partitioned
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domain meshes for parallel simulations. Consequently, the linear solver object
uses the matrix algebraic functions of the sparse object to solve the system
of equations. For the temporal discretization, we used the first order difference
method and employed an adaptive time stepping method with automatic control
[94], moreover all data and functions of which and the coupling of multi-physics
processes are encapsulated into a problem oriented object.



www.manaraa.com

Part II

Benchmarks for Single
Processes



www.manaraa.com

Chapter 4

Heat Transport

by Norbert Böttcher, Guido Blöcher, Mauro Cacace, and Olaf Kolditz

In the first benchmark chapter we consider heat transport in a porous medium
described by the heat balance equation (2.78). With the following assumptions:

• Constant material properties,
• Neglecting viscous dissipation effects,
• Local thermal equillibrium, cρ =

∑
α c

αρα, λ =
∑
α λ

α

we obtain the linear heat transport equation

cρ
∂T

∂t
+ cρv · ∇T −∇ · (λ∇T ) = qth, (4.1)

where c is specific heat capacity, ρ is density, T is temperature, v is advection
velocity and λ is thermal conductivity.

Conduction takes place when a temperature gradient in a solid or a stationary
fluid medium occurs. It runs into the direction of decreasing temperature. The
thermal conductivity is defined in order to quantify the ease with which a par-
ticular medium conducts heat. Against it, convection is caused by moving fluids
of different temperatures.

The equation for the heat conduction is

∂T

∂t
= ∇ · (α∇T ), (4.2)

where α = λ/cρ is the heat diffusivity constant.

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 4, © Springer-Verlag Berlin Heidelberg 2012
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Temperature changes cause a change of fluid density and viscosity which influ-
ences again the behaviour of the fluid while flowing through a porous medium
and therefore the velocity of heat transport by groundwater flow. The depen-
dence of density on temperature changes is regarded by using the relation given
in (4.3)

ρ(T ) = ρ0 · (1 + βT (T − T0)) . (4.3)

Here ρ0 represents the initial density, T the temperature, T0 the initial tem-
perature and βT is the thermal expansion coefficient assumed to be a material
constant. A more comprehensive description of thermal material behavior of flu-
ids and solids is given in Sects. 2.4 and 2.5, respectively. Temperature dependent
material behavior results in non-linear heat transport which is discussed in
the coupled processes part of this book.

We consider the following series of benchmarks for heat transport with slightly
increasing complexity.

• Linear heat conduction in a semi-infinite domain (4)
• Linear heat conduction in a finite domain (4.1)
• Radial heat conduction in a solid (4.1.3)
• Heat transport in a fracture (4.3)
• Heat transport in a porous medium (4.5)
• Heat transport in a fracture-matrix system (4.6)

4.1 Linear Heat Conduction in a Finite Solid

4.1.1 Definition

We consider a 1D half-domain which is infinite in one coordinate direction
(z → ∞) (Fig. 4.1).

0 z

Figure 4.1: Model domain
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Table 4.1: Solid phase material properties

Symbol Parameter Value Unit

ρ Density 2,500 kg·m−3

c Heat capacity 1,000 J·kg−1·K−1

λ Thermal conductivity 3.2 W·m−1·K−1

z
z=1m

const. T

Figure 4.2: Spatial discretisation of the numerical model

4.1.2 Solution

Analytical Solution

The analytical solution for the 1D linear heat conduction equation (4.2) is

T (x, t) = T0 erfc

(
x√
4αt

)
, (4.4)

where T0 is the initial temperature. The boundary conditions are T (z = 0) = 1
and T (z → ∞) = 0.

The material properties for this model setup are given in Table 4.1.

Using these values, the heat diffusivity constant is α = λ/cρ = 1.28 · 10−6m2/s.

Numerical Solution

The numerical model consists of 60 line elements connected by 61 nodes along
the z-axis (Fig. 4.2). The distances of the nodes Δz is one meter. At z = [0]m
there is a constant temperature boundary condition.

The Neumann stability criteria has to be restrained so that the temperature
gradient can not be inverted by diffusive fluxes. Using (4.5) the best time step
can be estimated by

Ne =
αΔt

(Δz)2
≤ 1

2
. (4.5)

With Δz = [1]m and α = [1.28 · 10−6] m2/s the outcome for the time step is
Δt ≤ [390625] s or 4.5 days, respectively.
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4.1.3 Results

Figure 4.3 shows the comparison of the solution of (4.4) and the numerical
simulation results. The temperature distribution is demonstrated along the
model domain after 2 months, 1 year, 2 years and 4 years.

Figure 4.3: Temperature distribution along the z-axis after 2 months, 1 year, 2
years and 4 years (from top left to bottom right)
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Figure 4.4: Heat conduction through a wall

4.2 Radial Heat Conduction in a Solid

4.2.1 Definition

In the first example (Sect. 4) there was a domain limited only by one side with a
constant temperature at the boundary. The following problem shows the profile
of a homogeneous and isotropic wall with a constant heat flow qth on the left
and a constant temperature TL on the right boundary (Fig. 4.4). We consider
diffusive heat transport on a two-side bounded domain.

4.2.2 Solution

Analytical Solution

A solution for this problem can be found by solving the heat conduction equation
(4.2) using Fourier ’s method (see [95])

T (x, t) = TL +
qth
λ

(L− x)

+

∞∑
n=1

− 8L

(2n− 1)2π2

qth
λ

cos
(2n− 1)πx

2L
e(−

(2n−1)2π2

4L2 α t)
(4.6)

with TL is the initial temperature, QA is the constant heat source, λ is the
thermal conductivity and α is the heat diffusivity constant.

z

z=0.1m

const. T

QA

Figure 4.5: Boundary conditions and discretisation for the numerical model

Numerical Solution

The numerical model consists of 40 line elements and 41 nodes along the x-axis
(Fig. 4.5). The step size Δz is set to [0.1]m. On the left boundary a constant
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Table 4.2: Material properties

Symbol Parameter Value Unit

qth Heat source [30] W· m−2

TL Initial temperature [25] ◦C
L Wall thickness [4] m
ρ Density of the solid [2000] kg ·m−3

c Heat capacity [900] J·kg−1·K−1

λ Thermal conductivity [5.5] W·m−1·K−1

source term is set. The right side obtains a constant temperature condition.
Table 4.2 shows the values of the used material properties. The heat diffusivity
constant is α = [3.1 · 10−6] m2/s.

4.2.3 Results

The comparison of the analytical and numerical solutions is presented in Fig. 4.6.
It shows the distribution of the temperature along the profile of the wall. Due to
the thickness of the wall, the heat transport takes substantial time, after 5×106

seconds (≈ 58 days) the temperature distribution becomes a steady-state.

4.3 Heat Transport in a Fracture

4.3.1 Definition

A slice with a hole in its centre, meaning a 2D annulus, which consists of a
solid of a constant temperature, is exposed to a higher temperature at the
surface of its hole. The aim of this calculation is to simulate the heat transfer
through a homogeneous solid by the use of an axisymmetric model. Figure 4.7
shows a sketch of the calculation area assuming a homogeneous solid, a constant
temperature in the whole body at the beginning and a heating of the slice at
the inner surface of the hole.

The inner radius R1 of the axisymmetric model is [1]m and the outer radius
R2 is [5]m. The numerical model consists of 40 elements and 41 nodes. The
initial temperature in the whole area is [25]◦C. At the right boundary of the
numerical model a thermal boundary condition is set with a constant value of
[25]◦C. At the left boundary a source term for heat flux of qth = [30]W/m2 is
defined. Thereby the continuous heating of the solid is simulated. The used
parameters of the solid are listed in Table 4.3. The simulation of 5,000 time
steps with a constant time step length of [1, 000]s is done.
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Figure 4.6: Temperature distribution along the wall profile after 10.000,
100.000, 500.000 and 5.000.000 seconds (from top left to bottom
right)

4.3.2 Solution

For the heating of the annulus with the inner radius R1 and the outer radius
R2 the following analytical solution exists for temperature as a function of the
radius r. The parameters are according to Table 4.3.

T (r) =
R1q

κ
ln

(
R2

r

)
+ T0. (4.7)
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r1

r2

Figure 4.7: Radial heat conduction

Table 4.3: Model parameters

Symbol Parameter Value Unit

ρs Density of the solid [2.0] t · m−3

cs Heat capacity [900] J · kg−1· K−1

λs Thermal conductivity [5.5] W ·m−1·K−1

qth Heat flux 30 W/m2

R1, R2 Inner and outer radius 1,5 m
T0, T2 Initial and boundary temperatures 25,25 K

4.3.3 Results

The results of the analytical equation for the temperature distribution over the
model length are compared to those of the numerical simulation. Figure 4.8
shows the temperature distribution over the radius of the annulus. Obviously,
with the axisymmetric numerical simulation generates comprehensible results
that agree well with the analytical solution.

4.4 Heat Transport in a Porous Medium

4.4.1 Definition

This problem shows 1D heat transport by advection and diffusion in a [100]m
long fracture. The fracture is fully saturated with water, flowing with constant
velocity. There is no rock matrix around the fracture considered which could
store heat (this will be examined in the next example). Figure 4.9 depicts the
model set-up.

The fracture is described as a porous medium with [100]% porosity, so that no
solid material influences the heat transport process. The properties of the fluid
are in Table 4.4.

These values cause a diffusivity constant for water of α = [1.5 ·10−7] m2/s. The
groundwater velocity in the fracture is v = [3.0 · 10−7] m/s.
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X=0m

v
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Figure 4.9: A fully saturated fracture with flowing water and a constant tem-
perature at the left border

Table 4.4: Model parameters

Symbol Parameter Value Unit

ρl Density of water [1, 000] kg·m−3

cl Heat capacity of water [4, 000] J · kg−1·K−1

λl Thermal conductivity of water [0.6] W ·m−1· K−1

v Water velocity 3×10−7 m/s
L Fracture length 100 m

4.4.2 Solution

For 1D-advective/diffusive transport, an analytical solution is given by Ogata
& Banks [96] as

T (x, t) =
T0
2

(
erfc

x− vx · t√
4αt

+ e
vx·x
α erfc

x+ vx · t√
4αt

)
, (4.8)

where T0 is the constant temperature at x = 0, v is the groundwater velocity
and α is the heat diffusivity coefficient of water. More information can be found
e.g. in [95, 97].



www.manaraa.com

98 CHAPTER 4 HEAT TRANSPORT

The mesh for the numerical model consists of 501 nodes combining 500 line
elements. The distance between the nodes is Δx = [0.2]m. The boundary
conditions applied are as follows:

• Left border:

– constant source term (liquid flow) with Q = [3.0 · 10−7] m3/s
– constant temperature with T = [1]◦C

• Right border:

– constant pressure with P = [100] kPa

• Initial conditions:

– pressure with P = [100] kPa for whole domain
– temperature T = [0]◦C for whole domain

• Time step:

– Δt = [133] s

With the given parameters, the Neumann criteria (4.5) results on Ne = 0.5
which guarantees the numerical stability of the diffusion part of the transport
process. The Courant criteria, given by

C =
vx ·Δt
Δx

≤ 1 (4.9)

is equal to C = 0.2.

4.4.3 Results

In Fig. 4.10 a comparison of the analytical and numerical solutions is plotted.
The figure shows the temperature breakthrough curve at the end of the frac-
ture at x = [100]m. The numerical results show acceptable agreement with
the analytical solution. In a further step, the diffusion part of the heat trans-
port process was avoided by minimizing the thermal conductivity of the fluid.
Figure 4.11 shows the breakthrough curve for only advective heat transport.

4.5 Heat Transport in a Porous Medium

4.5.1 Definition

In addition to the previous example (Sect. 4.3) now we consider heat transport in
a two-phase homogeneous porous medium consisting of a solid and liquid phase,
i.e. a 1D test example for groundwater flow and simultaneous heat transport in
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Figure 4.11: Temperature breakthrough curve when diffusion is neglected
(shows numerical diffusion)
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Table 4.5: Used soil and fluid parameters

Symbol Parameter Value Unit

Soil parameters
φ Porosity 0.01 –
k Permeability [1.0 · 10−11] m2

ρs Density [2, 850] kg· m−3

cs Heat capacity [1, 000] J ·kg−1· K−1

λs Heat conductivity [3.2] W · m−1· K−1

Fluid parameters

ρf0 Initial density [1, 000] kg· m−3

η Viscosity [0.001] N· s ·m−2

cf Heat capacity [4, 000] J ·kg−1· K−1

λf Heat conductivity [0.6] W · m−1· K−1

an aquifer. The aim of the numerical simulation is also to determine the effect
of varying density value with temperature changes.

4.5.2 Solution

For the 1-dimensional calculation, the calculation area is simplified as a line with
the length of [5.2]m. The calculation model includes 25 elements and 26 nodes.
The initial pressure in the whole area is [100] kPa and the initial temperature
[300]K. As boundary conditions a constant pressure of [101] kPa is given at the
left boundary and of [100] kPa at the right boundary. A constant temperature
of [400]K is set at the left boundary. The used soil parameters are listed in
Table 4.5. The fluid density is decreasing with increasing temperature. The
viscosity, capacity and conductivity of water are set to constant values. The
fluid parameters also can be found in Table 4.5.

In order to find out whether the consideration of varying water density with
temperature changes is possible, one simulation run is done with a constant
density of [1, 000]kg/m3, which is the initial water density before heating, and
one run with a constant density of [900]kg/m3, the density after the heating
process. The temperature results for a heat transport with varying density have
to be in between both temperature envelopes.

4.5.3 Results

The curve for temperature evolution, which is shown in Fig. 4.12 for the right
boundary (node 26), shows the expected characteristics. Therefore it can be
stated, that the consideration of temperature dependent fluid density is possible.
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Figure 4.12: Temperature evolution with constant and variable fluid densities

4.6 Heat Transport in a Fracture-Matrix
System

4.6.1 Definition

Based on the example for heat transport in a fluid filled fracture (Sect. 4.3), this
problem is extended by heat diffusion through a rock matrix orthogonal to the
fracture (Fig. 4.13).

The model and material parameters for the fracture and rock matrix, respec-
tively, are given in Table 4.6.

4.6.2 Solution

For this problem an analytical solution was derived by Lauwerier (1955) (see
[97]) with following assumptions:

• in the fracture, heat is transported only by advection,
• in the rock matrix, heat transport takes place by diffusion (only along the
z-axis).
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Figure 4.13: Heat transport in a fracture-matrix system

Table 4.6: Model parameters for the Lauwerier-problem

Symbol Parameter Value Unit

Spatial discretisation
L Fracture length [50] m
W Matrix width [63.25] m
Δx Step size X [2] m
Δz Step size Z [0.1265] m
b/2 Half of fracture width [1.0 · 10−3] m
vx Groundwater velocity [1.0 · 10−4] m/s

Temporal discretisation
Δt Time step length [2.0 · 105] s

Number of time steps 2,500
Total time [5.0 · 108] s

Material properties—solid
λ Thermal conductivity [1] W·m−1·K−1

c Heat capacity [1, 000] J·kg−1·K−1

ρ Density [2, 500] kg ·m−3

Material properties—fluid
c Heat capacity [4, 000] J·kg−1·K−1

ρ Density [1, 000] kg ·m−3

The Lauwerier solution is given by

TD =

⎧
⎨
⎩
0, tD < xD

erfc

{
β√

α(tD−xd)

[
xD + 1

2β

(
zD − 1

2

)]}
, tD > xD

, zD ≥ 1

2
(4.10)

with the following dimensionless parameters:

tD =
vx
b
t, xD =

x

b
, zD =

z

b
, α =

λs

csρs
1

bvx
, β =

λs

clρl
1

bvx
(4.11)
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where b is the fracture width, λ is the thermal conductivity, c is the heat capacity,
ρ is the density and the suffixes s and f denote the solid (rock) and liquid (water)
phases, respectively.

The numerical Lauwerier model is formed as a coupling of advective 1D heat
transport in x-direction and diffusive 1D heat transport in z-direction. This
means, that nodes in the rock matrix are not influenced by their left or right
neighbors. The matrix elements are connected to the fracture elements orthogo-
nally. Figure 4.14 shows a schematical description of the model setup. Because
of the symmetry, the numerical model calculates just the domain above the
x-axis.

Figure 4.15 shows the positions of observation points which were chosen to
evaluate the numerical model in comparison with analytical solutions.

x

z

T,Q=const. P=const.
dx

dz

Figure 4.14: Alignment of the grid for the numerical model

W

L

0

17

9

14

23 24

15

1211 13

2221

10

8765

16 18

20

19

4321 fracture
z

x

Figure 4.15: Positions of observation points for temperature breakthrough
curves
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analytical solution

numerical solution

Figure 4.16: Temperature distribution orthogonal to the fracture at x = 0 at
three different times

analytical solution

numerical solution

Figure 4.17: Temperature distribution along the fracture at three different times



www.manaraa.com

4.6 HEAT TRANSPORT IN A FRACTURE-MATRIX SYSTEM 105

numerical solution

analytical solution

t'=
t v

b

P5

P11

P7

P3

Figure 4.18: Temperature breakthrough curves at certain points in the rock
matrix

4.6.3 Results

The quality of the numerical results can be shown by temperature distribution
curves for several times in the rock matrix. Figure 4.16 shows the temperature
profiles for x = [0]m at three moments t′. The numerical solution is in very
good agreement with the analytical results. Temperature profiles along the
fracture at z = [0]m are plotted in Fig. 4.17.

For long simulation times (t′ = 1, 000; t′ = 600) both solutions fit very well
together. For short simulation times, the numerical solution differs slightly
from the analytical results. This discrepancy for short simulation times can
be examined in Fig. 4.18, where temperature breakthrough curves for certain
points (see Fig. 4.15) are plotted.
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Chapter 5

Groundwater Flow

by Feng Sun, Norihiro Watanabe, and Jens-Olaf Delfs

5.1 Groundwater Flow in an Anisotropic

Medium

5.1.1 Definition

The aim of this example is to simulate the stationary groundwater flow in an
anisotropic porous medium. In order to consider the permeability anisotropy, a
2-D numerical model is built which contains a higher permeability in the vertical
direction than that in the horizontal direction. The aquifer is assumed saturated
and stationary.

For the two-dimensional simulation, the cube consisting of a porous medium is
simplified as a square with an area of 1 m2. The calculation model includes
736 triangular elements and 409 nodes. At the lower left corner of the model
a constant pressure of 1,000 Pa is specified along two polylines of the length
of 0.3 m (Fig. 5.1). At the top and the right borders the pressures are set to
0 in order to create the pressure gradient. As the porous medium is assumed
to be anisotropic, which influences the groundwater flow, the values for the
permeabilities are equal to 1.0×10−15 m2 in x-direction and 1.0×10−14 m2 in
y-direction. Other properties of the anisotropic media are shown in Table 5.1.

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 5, © Springer-Verlag Berlin Heidelberg 2012

107



www.manaraa.com

108 CHAPTER 5 GROUNDWATER FLOW

Figure 5.1: Calculation model (2-D) of the anisotropic media

Table 5.1: The parameters defined in the anisotropic media

Symbol Parameter Value Unit

n Porosity 0.2 –
κx Permeability 1.0× 10−15 m2

κy Permeability 1.0× 10−14 m2

5.1.2 Evaluation Method

This test example was not created in order to introduce a new process, however
to show the OGS user the possibility of giving a specific permeability for each
direction. Therefore, the interpretation of OGS results comprises merely the
comparison between pressure distributions due to the anisotropic permeability
that were simulated by the use of RockFlow (RF) and OGS. This comparison is
possible because both versions were developed separately concerning anisotropy
of soils.

5.1.3 Results

In Fig. 5.2 the horizontal and vertical pressure distributions of an anisotropic
groundwater flow model which was developed using the program code RF are
depicted next to those calculated from the above described anisotropic model
with OGS. While presuming an anisotropic medium, an inhomogeneous pressure
field is developing because the groundwater is not able to spread out uniformly.
This can be recognized at the different curve gradients in x- and y-direction.
There are slight differences between the curve characteristics of the RF and OGS
simulation results. These differences are due to different element types (square
in the RF model) and the resulting different x- or y-coordinates. Therefore, the
pressure distributions obtained by the simulation with OGS are evaluated to be
correct.
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Figure 5.2: Pressure distribution caused by anisotropic saturated flow

5.2 Groundwater Flow in a Heterogeneous

Medium

5.2.1 Definition (2-D)

The aim of this example is to simulate the stationary groundwater flow in an
isotropic and heterogeneous porous medium. In order to consider the heteroge-
neous of hydraulic conductivity, a 2-D numerical model is built. The heteroge-
neous distribution of hydraulic conductivity is shown in Fig. 5.3. The aquifer is
assumed isotropic, heterogeneous, saturated and stationary.

For the two-dimensional simulation, the cube consisting of a porous medium is
simplified as a square with an area of 10,000 m2. The calculation model includes
10,000 quad elements and 10,201 nodes. At the left boundary a constant head
of 10 m and the right boundary a constant head of 9 m are specified in order to
create a pressure gradient.

5.2.2 Results (2-D)

As shown in Fig. 5.4, the head distribution of the groundwater flow in a hetero-
geneous medium is depicted complying with the distribution of the hydraulic
conductivity.



www.manaraa.com

110 CHAPTER 5 GROUNDWATER FLOW

Distance (m)

D
is

ta
n

ce
 (

m
)

0 20 40 60 80 100
0

20

40

60

80

100

3.00E-06

2.00E-06

1.33E-06

8.84E-07

5.88E-07

3.91E-07

2.60E-07

1.73E-07

1.15E-07

7.67E-08

5.10E-08

3.39E-08

2.26E-08

1.50E-08

1.00E-08

Hydraulic
conductivity
(m/s)

Figure 5.3: Calculation model (2-D): hetergeneous hydraulic conductivity
distribution
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Figure 5.5: Calculation model (3-D): hetergeneous hydraulic conductivity dis-
tribution

5.2.3 Definition (3-D)

For the three-dimensional simulation, the aquifer is defined as a 100 m× 100 m×
50 m cuboid. The calculation model includes 60,025 hex elements and 65,000
nodes. A constant head of 10 m at the left surface and a constant head of 9 m
at the right surface are specified in order to create a pressure gradient. The
heterogeneous distribution of hydraulic conductivity is shown in Fig. 5.5.

5.2.4 Results (3-D)

As shown in Fig. 5.6, the 3-D head distribution of the groundwater flow in a het-
erogeneous medium is depicted in response to the distribution of the hydraulic
conductivity.

5.3 Confined Aquifer with Constant Channel
Source Term

5.3.1 Definition

This example deals with an aquifer which is subject to a constant recharge line
source. The channel is assumed to be independent of the groundwater head
and not affected by the water loss or the exchange flux. Therefore, the source
term represents a steady and uniform channel located above the aquifer. The
cross-section of the channel is rectangular (Fig. 5.7).
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Figure 5.6: Head distribution in response to isotropic and heterogeneous
medium (3-D)

Figure 5.7: The illustration of the cross section of the channel/groundwater

The integrated recharge flow that provides the link between the channel and
the groundwater is defined by 5.1 [98].

qex =

⎧
⎨
⎩

−KΛP
(hr−hg)

a hg > (zr − a)

−KΛP
(hr−(zr−a))

a hg ≤ (zr − a)

(5.1)

where KΛ is the channel bed conductivity, B is the channel width, a is the
channel bed thickness and hr is the channel flow head, hg is the groundwater
table. The wetted perimeter P = 2(hr − zr) +B for rectangular channel where
zr is the height of the top of the channel bed.
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In this benchmark, the aquifer size is 20 m× 10 m with the source term at the
left boundary (See Fig. 5.10). The initial groundwater head is 0 m. The channel
source term is the boundary condition at one side, at the opposite boundary
the head is fixed with 0 m. At the remaining boundaries no-flow is imposed.

For the spatial discretization either 24 × 12 quadrants or hexahedra are used
as well as prisms which are generated by cutting the hexahedra into two parts.
The hexahedra or prism height is 1 m. The time step is 1 minute. Simulation
parameters for the aquifer and the channel source term are given in Table 5.2.

A constant recharge value of 4.0×10−4m2/s is obtained from (5.1) when the
properties of the channel are defined as those values in Table 5.2. Because this
problem is symmetric for uniform and isotropic conditions in the aquifer,only
half of the domain is taken into account. Therefore, the constant Neuman
boundary condition is assigned with half of the recharge value (2.0×10−4m2/s).

5.3.2 Solution

R. E. Glover [99] presented an analytical solution for a constant line source in
an infinite aquifer domain in 1978, which gives the groundwater head at any
point of the source line by the following equation,

h = qex

√
μt

πρgκLSy
(5.2)

where qex is the recharge rate [L2/T], L is the saturated thickness of the aquifer
[L], κ is the permeability of the aquifer [L2/T], Sy is the specific yield of the
aquifer [-] and t is the time [T].

Table 5.2: Parameters for channel source term examples

Symbol Parameter Value Unit

Aquifer

S Storage 0.2 −
μ Viscosity 1.0× 10−3 Pa·
K Conductivity 1.0× 10−3 m/s
L Thickness 25 m

Channel source term

hr Channel water surface 3 m
zr Bed top location 0 m
a Bottom sediment thickness 0.3 m
B Channel width 34 m
KΛ Bed conductivity 1.0× 10−6 m/s
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Figure 5.8: Results with quadratic elements and the analytical solution for a
confined aquifer below a uniform and steady channel

5.3.3 Results

Comparison of simulation results and the analytical solution is given in Fig. 5.8
for quadrants and in Fig. 5.9 for hexahedra.

The small differences between Figs. 5.8 and 5.9 are mainly caused by the channel
source term. In the model with hexahedral elements, the channel source term
is defined as a line source at the left-top boundary of the domain (Fig. 5.10).

5.4 Theis’ Problem

5.4.1 Definition

Theis’ problem examines the transient lowering of the water table induced by
a pumping well. Theis’ fundamental insight was to recognize that Darcy’s law
is analogous to the law of heat flow by conduction, i.e., hydraulic pressure
being analogous to temperature, pressure-gradient to thermal gradient. The
assumptions required by the Theis solution are:

• the aquifer is homogeneous, isotropic, confined, infinite in radial extent,

• the aquifer has uniform thickness, horizontal piezometric surface
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Figure 5.9: Results with hexahedral elements compared with the analytical solu-
tion for a confined aquifer below a uniform and steady channel

Y
X

Z

Figure 5.10: Computational domain and source term location

• the well is fully penetrating the entire aquifer thickness,

• the well storage effects can be neglected,

• the well has a constant pumping rate,

• no other wells or long term changes in regional water levels.

5.4.2 Solution

The analytical solution of the drawdown as a function of time and distance is
expressed by (5.3):
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Table 5.3: The parameters defined in 1-D Theis’ problem

Symbol Parameter Value Unit

h(0, r) Initial conditions 0 m
Q Well pumping rate 1.2233×103 m3/d
h(t, 304.8) Boundary conditions 0 m

K Hydraulic conductivity 9.2903×10−4 m/s
S Storage coefficient 0.0010 –
r 0.3048 Wellbore radius m

h0 − h(t, x, y) =
Q

4πT
W (u) (5.3)

u =
(x2 + y2)S

4T t
(5.4)

where h0 is the constant initial hydraulic head [L], Q is the constant discharge
rate [L3T−1], T is the aquifer transmissivity [L2T−1], t is time [T ], x, y is the
coordinate at any point [L] and S is the aquifer storage [−]. W (u) is the well
function defined by an infinite series for a confined aquifer as

W (u) =

∫ +∞

u

e−u

u
du = −γ − lnu+

∞∑
k=1

(−1)k+1uk

k · k! (5.5)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. For practical purposes, the
simplest approximation ofW (u) was proposed asW (u) = −0.5772− lnu for u <
0.05. Other more exact approximations of the well function were summarized
by R. Srivastava and A. Guzman-Guzman [100].

The parameters and initial & boundary conditions are defined in Table 5.3.

5.4.3 Results

Figure 5.11 shows the comparison of analytically and numerically calculated
drawdown of hydraulic head versus time at the distance of 9.639 m from the well.

5.4.4 2-D Application

The 2-D application is solved in the following situation (Table 5.4).

The aquifer’s horizontal domain size is 1,000 m × 750 m with the pumping well
at the location coordinate (500, 375). The discretization of space is 10 m × 10 m



www.manaraa.com

5.5 UNCONFINED AQUIFER 117

Pumpingtime [day]

H
yd

ra
u

lic
 h

ea
d

 d
ra

w
d

o
w

n
 [

m
]

10-4 10-3 10110010-110-2

10-1

100

101

analytical solution
numerical solution

Figure 5.11: Calculated drawdowns at a distance of 9.639 m from the well

Table 5.4: The parameters defined in 2-D Theis’ problem

Symbol Parameter Value Unit

Q Discharge rate 1,000 m3/d
S Specific storage 1.0× 10−5 1/m
T Transmissivity 1,000 m2/d
B Thickness of aquifer 20 m

grid. The simulation time is 151.2 seconds and the time step is 1.036 seconds.
The initial head is 20 m in the whole domain and the boundary condition is 0 m
drawdown at the left and right boundaries. There is no flux through the top
and bottom boundaries. The cone of depression induced by the pumping well
at the end of the simulation is plotted in Fig. 5.12.

5.5 Unconfined Aquifer

5.5.1 Definition

In this example the aquifer consists of a small strip with the size of 100 m ×
2 m (see Fig. 5.13). At both ends the head is fixed and constant recharge is
imposed on the whole domain which leads to steady state flow. This setting
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Figure 5.12: Cone of depression at the end of the simulation

allows the comparison with an analytical solution. Initial groundwater head is
0 m. At one end of the strip the head is 1 m at the other 5 m. At the top a
source term is 1.0×10−8 m/s and at the remaining parts no-flow is imposed. For
the spatial discretization 100 equal quadrants and 410 triangles or prisms are
used. In the later case, the three-dimensional unconfined groundwater equation
is solved with elements adapting to the water height. One time step with the
size of 100 s is used. The specific storage Ss = 0 m−1 or specific yield Sy = 0
and a hydraulic conductivity K of 9.9×10−6 m/s are used.

5.5.2 Analytical Solution

In an unconfined aquifer, the saturated thickness is defined as the vertical dis-
tance between the water table surface and the aquifer base. If the aquifer base
is at the zero datum, then the unconfined saturated thickness (b) is equal to
the head (h). With the Dupuit assumption (or Dupuit-Forcheimer assump-
tion), where it is assumed that heads do not vary in the vertical direction
(i.e., ∂h

∂z = 0), a horizontal water balance is only applied to a long vertical
column with area (δxδy) extending from the aquifer base to the unsaturated
surface. For this vertical column, applying Darcy’s law and a mass balance
expression, the groundwater flow equation for an unconfined aquifer can be
obtained:

Sy
∂h

∂t
= ∇ · (kh∇h) +N (5.6)

where N [L/T] is the source term representing the addition of water in the
vertical direction, Sy [-]is the specific yield of the aquifer and k [L/T] is the
hydraulic conductivity.
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The unconfined groundwater flow equation is a non-linear partial differential
equation, and it may be linearized by expressing the PDE in terms of the squared
head for steady-state flow:

∇ · (k∇h2) = −2N (5.7)

and for the homogeneous aquifers, (5.7) becomes

∇2∇h2 = −2N

k
(5.8)

Equation (5.8) can be solved by the standard integration method for linear
PDEs. For the definition of the unconfined aquifer above, the analytical solution
is expressed by the following equation.

h =
√
−0.001x2 − 0.14x+ 25 (5.9)

5.5.3 Results

Comparison of simulation results with prisms and the analytical solution is
shown in Fig. 5.13.
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Figure 5.13: Benchmark example results of unconfined aquifer with prisms
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5.6 2-D Steady State Flow in Porous Media

with a Discrete Fracture

5.6.1 Definition

This example illustrates the disturbance of the uniform flow in porous media
caused by the presence of a fracture. Consider a 2-D infinite horizontal plane of
porous media with an embedded fracture. Uniform flow with specific discharge
q0 occurs from the left to the right side of the domain. The fracture extends to
infinity in the directions normal to the plane. The middle point of the fracture
is placed at the center of the plane. The shape of the fracture is shown in
Fig. 5.14. The fracture has a length of L and is inclined with angle β. The
fracture aperture b may vary with positions. In this example, it is assumed that
the shape corresponds to that obtained from the normal displacements of the
sides of a pressurized crack in an elastic medium. This gives

b = bmax

√
1− x′2 (5.10)

where x′ is the normalized local coordinate systems. bmax is the aperture at
the center x′ = 0. Assuming the volume of the fracture is sufficiently small
as compared to that of porous media, the flow in the porous media can be
modeled ignoring the width of the fracture. The flow in the fracture is assumed
to be laminar along the fracture surface. Hydraulic conductivity of the fracture
is constant and independent of the aperture variation. The pressure variation
across the fracture is neglected.

5.6.2 Solution

Analytical Solution

Strack [101] has derived an exact solution for this problem as the potential flow.
The obtained complex potential Ω is given as

Figure 5.14: Fracture geometry
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Table 5.5: Model parameters

Symbol Parameter Value Unit

α Fracture angle 45 ◦
bmax Maximum fracture aperture 0.05 m
L Fracture length 2.0 m
Kf Fracture hydraulic conductivity 1.0× 10−3 m/s
Km Porous medium hydraulic conductivity 1.0× 10−5 m/s
q0 Specific discharge 1.0× 10−4 m/s

Figure 5.15: Computational area

Ω = −A
√
(Z − 1)(Z + 1) +AZ − 1

2
q0Le

iαZ + C (5.11)

for the dimensionless variable Z

Z = X + iY =
z − 1

2 (z1 + z2)
1
2 (z2 − z1)

(5.12)

with the endpoints of the fracture z1 and z2. A is defined as

A =
1
2Kfbmax

KmL+Kfbmax
q0L cosα (5.13)
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Figure 5.16: Pressure distribution obtained by the analytical solution

Figure 5.17: Pressure profile along a diagonal line from the bottom-left to the
top-right

and C is the integration constant. In this example, the constant is simply
considered as zero.

Numerical Solution

A numerical solution can be obtained by solving the steady state liquid flow
problem in a hybrid system of a discrete fracture model and continuum model
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(porous media). The fracture is represented as a 1D hydraulic conduit. The
domain is set up in a finite space as a square with a length of 10 m as depicted
in Fig. 5.15. To compare numerical results with the analytical solution, pressure
calculated by the analytical solution is utilized as prescribed pressure at the
lateral boundaries, i.e. pin = 496465 Pa and pout = −496465 Pa. It is assumed
that the fracture aperture does not vary with positions and has a constant value
even at the endpoints, b = bmax. Other properties of the numerical model are
shown in Table 5.5.

5.6.3 Results

Pressure distribution obtained by the analytical solution is shown in Fig. 5.16.
Lateral uniform flow is disturbed in the vicinity of the inclined fracture where
the flow is faster than in surrounding porous media. Figure 5.17 presents the
pressure profile along a diagonal line from the bottom-left to the top-right.
Although the numerical solution adopts the idealized fracture geometry, results
show good agreement between the numerical and the analytical solution.
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Chapter 6

Richards Flow

by Thomas Kalbacher and Yanliang Du

The upper parts of the ground usually belong to the vadose zone, i.e. the zone
between land surface and the top of the upper aquifer. This zone is a transi-
tion section between the atmosphere, biosphere, lithosphere and hydrosphere
and connects the neighboring compartments via air, water and solids including
biomass and organic matter. The vadose zone can be roughly subdivided from
top to bottom into a soil water zone, intermediate zone, and the capillary fringe.
Only 0.0012% of the global water reservoir or 0.05% of the fresh water budget
remains in soil. Compared with groundwater reservoirs, which store over 30% of
the global fresh water, the mass fraction of soil water within the hydraulic circle
seems to be small, but is actually more dynamic. Water only resides in soil
systems a few weeks on average, while groundwater systems can have residence
times of several millenniums. Generally, the flow processes in soil take place
under unsaturated conditions, i.e. the pore spaces are only partly filled with air
and water. Moreover, such unsaturated conditions can occur in any multiphase
regime where the water that partly fills the pore system is under suction and
the pressure head is negative.

With the single continuum approach, the pore system of each porous media is
regarded as the only process environment for flow. Within the pore space, the
conductivity for the air flow is much higher than for the water flow. Obviously,
a change of the volumetric water content in such regimes causes a change of the
air volume. However, if the air phase is considered as continuous and mobile as
far as possible, then the air pressure can be assumed as constant and equal to
the atmospheric pressure. Since air is much more mobile compared to water,
the required driving forces for moving the gas phase in such a system, can be

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 6, © Springer-Verlag Berlin Heidelberg 2012
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neglected. This simplification of a two phase flow system (air and water) is also
called the Richards flow regime.

The Richards equation is often used to mathematically describe water move-
ment in the unsaturated zone. It has been introduced by Richards (1931) [102]
who suggested that Darcy’s law under consideration of the mass conservation
principle, is also appropriate for unsaturated flow conditions in porous media.
The pressure based formulation of this governing equation (Eq. 6.1), which
selects the unknown primary variable as p, can be written as:

φρw
∂S

∂pc

∂pc
∂t

+� ·
(
ρw
krelk

μw
(�pw − ρwg)

)
= Qw (6.1)

where φ is porosity, t is time, ρw is the liquid density, μw is the liquid viscosity,
pc is the capillary pressure with pc = -pw, pw is the water pressure, S is the
water saturation, g is gravity acceleration vector, Qw is the source term, krel is
the relative permeability and k is the intrinsic permeability which is related to
the hydraulic conductivity K with

k =
μw
ρwg

K (6.2)

In an unsaturated porous media, the capillary pressure is fundamentally related
to the saturation of the gas and liquid phase. If e.g. the water saturation
decreases and hence the saturation of air increases, then the water retreats to
smaller pores and the capillary pressure increases. The capillary pressure can be
seen as a function of the effective saturation Seff. This relationship is primarily
determined by the nature of the pore space geometry and interconnectivity and
is highly non-linear. Brooks and Corey (1964) [49] and Van Genuchten (1980)
[51], among many other scientists, derived functional correlations which contain
empiric shape parameters that characterize pore-specific properties. With the
Van Genuchten parameterization the capillary pressure can be described as

pc =
ρwg

α

[
S
−1/m
eff − 1

]1/n
(6.3)

where α [1/m] is a conceptualized parameter related to the air entry pressure, n
is a dimensionless pore size distribution index and m = 1-(1/n). These parame-
ters are usually used to fit the saturation dependent curves of capillary pressure
and hydraulic conductivity to experimental data. The relative permeability can
be given as

krel = S
1/2
eff

[
1− (1− S

1/m
eff )m

]2
(6.4)

The effective saturation is

Seff =
S − Sr

Smax − Sr
(6.5)

with Smax and Sr as the maximum and residual saturation.

With Richards and the single continuum approach, all materials are regarded as
continuous porous media, but in porous and fractured media, the fractures and
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matrix often exhibit strongly differing hydraulic material properties. The dual
permeability method accounts for these differences by assuming two separate but
interacting continua that overlap each other in space; one describes flow in the
fractures and the other describes flow in the matrix (e.g. Barenblatt et al. 1960
[103], Gerke and van Genuchten 1993 [104] or Vogel et al. 2000 [105]). The
dual permeability model, also more generally called the dual porosity model,
is composed by coupled Richards equations of the matrix M and fracture F
continua, which are combined by additional transfer and specific storage terms.

φ
∂SM

∂pMc

∂pMc
∂t

+� ·
(
krelk

M

μw
(�pMw − ρwg)

)
=
QMw
ρw

+
Γw
wM

(6.6)

φ
∂SF

∂pFc

∂pFc
∂t

+� ·
(
krelk

F

μw
(�pFw − ρwg)

)
=
QFw
ρw

− Γw
wF

(6.7)

Under quasi-steady exchange conditions, the transfer term Γw(t, x) is assumed
to be proportional to the pressure difference between the pore systems of the
matrix and fractures, pMw −pFw. The relationship between the preferential factors
wM and wF is wM + wF = 1.

The original definition of the transfer term is adequate for soils, but for fractured
porous rock the unsaturated flow in the fractures is more likely to form in
channels rather than be uniformly distributed over the entire fracture plane
therefore an additional modification is needed as suggested by Birkholzer and
Zhang (2006) [106], who introduced an interface reduction factor R.

Γw = α∗ kα
μw

(pFw − pMw )R (6.8)

kα is the permeability at the interface between the fracture and matrix continua,
but usually defined as the unsaturated permeability kM of the matrix, since the
much smaller hydraulic conductivity of the matrix is the limiting factor for the
fracture-matrix flow. The first-order exchange coefficient α∗ [1/m2] is derived
from fracture network properties and has to be calibrated using experimental
data. The interface reduction factor R is typically equal to the effective fracture
liquid saturation.

6.1 Single Continuum

All materials used in the benchmarks of the following subsections are regarded
as porous media with continuous hydraulic properties. The solution of the single
continuum models is based on Eq. (6.1).

6.1.1 Infiltration in Homogeneous Soil

Definition

This infiltration problem refers to a classical field experiment described by
Warrick et al. (1971) [107], who examined simultaneous solute and water
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transfer in unsaturated soil within the Panoche clay loam, an alluvial soil of
the Central Valley of California. A quadratic 6.10 m plot, which had an average
initial saturation of 0.455, was wetted for 2.8 h with 0.076 m of 0.2 N CaCl2,
followed by 14.7 h infiltration of 0.229 m solute-free water. The soil-water pres-
sure was monitored by duplicate tensiometer installations at 0.3, 0.6, 0.9, 1.2,
1.5 and 1.8 m below surface.

The numerical infiltration model has been discretized geometrically by a 2.0 m
long vertical column with a top surface of 1 m2 (Fig. 6.1). It has been solved
by the use of Richards’ equation, with a uniform initial condition, fixed bound-
ary condition without source terms, curve descriptions of saturation dependent
parameters and homogenous media properties.

Two fixed pressure boundary conditions are used in the flow equation with a uni-
form initial saturation in the whole domain of 45.5%. At the top, the 2 m high
soil column is open to the atmosphere, i.e. the capillary pressure is 0 Pa. The
bottom of the column has a capillary pressure of 21,500 Pa (Fig. 6.1). Homoge-
neous material properties are assumed within the whole domain. The average
saturated moisture content, which is equal to the porosity of the soil, is 0.38.
The saturated permeability is 9.35e-12 m2. The relative permeability and cap-
illary pressure vs. saturation data are fitted by the soil characteristic functions
as shown in Fig. 6.2 respectively and the soil parameters are listed in Table 6.1.

Results

The simulated and experimental saturation data at various time steps are plot-
ted in Fig. 6.3. The simulated infiltration front (solid line) propagates through
the soil column and resembles well the measured saturation results (dashed
lines) of Warrick et al. (1971) [107].

To ensure the consistency of different interpolation functions, the soil column
has been discretized by one-, two and three-dimensional geometrical models,

Figure 6.1: Model domain
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Figure 6.2: Relationship between saturation and capillary pressure as well as
between saturation and relative permeability

Table 6.1: Material properties

Symbol Parameter Value Unit

pc Capillary pressure Curve in Fig. 6.2(l) Pa
krel Relative permeability Curve in Fig. 6.2(r) –
k Intrinsic permeability 9.35e-12 m2

which contain accordingly consistent finite element types such as lines, trian-
gles, quadrilaterals, tetrahedrons, prisms or hexahedrons. The distinctions of
the different discretization cases are presented in Fig. 6.4, which illustrates the
temporal evolution of the capillary pressure for the different dimension exten-
sions in the same depth. Figure 6.5 shows the saturation contours after 2, 9
and 17 hours for three different structured and unstructured meshes including
elements of lines, triangles or quadrilaterals.

6.1.2 Infiltration in Homogeneous Soil (ST/BC)

Definition

This example is a one-dimensional infiltration problem which has been used to
validate the HYDRUS code [108] as well as the Forsyth model [109], among
many others. The experimental study was conducted by Abeele et al. (1981)
[110] at Los Alamos National Laboratory and the material properties included
in the model are those of the Bandelier Tuff.

Figure 6.6 shows the computational domain of this one-dimensional example,
which is a 6m long cylindrical column with a diameter of 3 m. The finite element
mesh has a constant mesh density with a node spacing of 3 cm in z direction.
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Figure 6.3: Comparison of observed (symbol and dashed) and simulated (solid)
infiltration
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Figure 6.4: Water pressure breakthrough curve. Congruent result for different
finite element grids
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Figure 6.5: Saturation contours and result comparison for different element
types. Left: unstructured triangular mesh (2D). Right: structured
quadrilateral mesh (2D) and 1D line mesh (symbol-solid)

Figure 6.6: Computational domain of the numerical model

Again, the assumption is a homogenous material with unchanging properties
within the whole domain. The porosity is 0.33 and the saturated permeability is
2.95e-13 m2. A van Genuchten parameterization is applied for partly saturated
conditions. All material specific parameters are listed in Table 6.2.
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Table 6.2: Material properties

Symbol Parameter Value Unit

φ Porosity 0.33 –
ks Saturated permeability 2.95e-13 m2

Sr Residual water saturation 0.0 –
Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 1.43 1/m
n Van Genuchten parameter 1.506 –

At the beginning, the material is already relatively wet and does not show super
dry conditions. The initial water saturation is S = 0.303 and constant within
the whole domain. Therefore the initial condition of pressure is −71, 000 Pa and
constant. The continuous infiltration over 7.16 days at the top of the domain is
treated as a source term with 2.314e-6 m/s. Details are illustrated in Fig. 6.6.

Results

Figure 6.7 shows the distribution of the water saturation at various times. The
left side of Fig. 6.7 is the original result from Forsyth et al. (1995) [109], who
compared their code with the HYDRUS simulation. Their problem was solved
using both central and upstream weighting and are in close agreement with the
HYDRUS results. The OGS simulation results at the right of Fig. 6.7 show
similar results as the HYDRUS model, since both are centrally weighted and
using a mass conservative formulation.

6.1.3 Transient Infiltration in Homogeneous Soil

Definition

The following case study was designed by David Kuntz [111] in Tübingen
and has been compared with the numerical solutions of Min3P, a multicompo-
nent reactive transport modeling tool for variably saturated porous media (e.g.
Mayer et al. 2002 [112]). The model domain depicts a 0.25 m long vertical soil
column with a transient water infiltration at the top (Fig. 6.8). Each artificial
infiltration event increases drastically, lasts for 24 hours and is repeated weekly,
such as for typical surface irrigation scenarios on the lysimeter scale (Fig. 6.9).

The major difference of this test problem, aside from the intermittent infiltra-
tion, is that the top fixed boundary condition changes to a source term (flux).
The boundary condition at the bottom stays fixed with a pressure of−31, 800Pa.
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Figure 6.7: Saturation contours and comparison between HYDRUS, Forsyth
models (left) and OGS (right). Source of left diagram: Forsyth
et al. (1994) [109]

Figure 6.8: Computational domain (left) and initial conditions (right)

The initial pressure distribution is shown at the right of Fig. 6.8. The homoge-
neous material properties are given in Table 6.3 and the soil specific parameters
are defined by the use of a van Genuchten parameterization.
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Table 6.3: Material properties

Symbol Parameter Value Unit

φ Porosity 0.406 –
ks Saturated permeability 9.35247e-12 m2

Sr Residual water saturation 0.056 –
Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 4.56 1/m
n Van Genuchten parameter 0.254 –
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Figure 6.9: Irrigation sequence

Results

The numerical model was geometrically discretized in 1D (pseudo 1D in the
finite volume model Min3P) with a constant vertical node spacing of 0.00125m.
The contours of Fig. 6.10 display the alternating decrease and increase of the
water saturation, modeled with OGS. The results of both software packages
were compared at three points in 0.025, 0.15 and 0.2 m depths below the surface.
Figure 6.11 shows the comparison of the saturation characteristics over time.

6.1.4 Heterogeneous Soil and Non-uniform IC (-/BC)

Definition

This problem case was defined within the scope of the DECOVALEX project.
The name stands for development of coupled models and their validation against
experiments. The general goal of this project is multidisciplinary, interactive and
cooperative research on modeling coupled processes in geologic formations, in
support of performance assessment for underground storage of radioactive waste.
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Figure 6.10: Saturation distributions at different times
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The following test scenario reflects an excavated tunnel in fractured granite, with
a waste canister emplaced within a bentonite fill. In this chapter, only liquid
flow in bentonite and granite is of interest and both are assumed as porous
media. Disregarding the canister, the computational model is a one-dimensional
horizontal finite element model with an overall length of 17.05 m, extending from
the left end (x=0.45 m) to the right end (x=17.5 m) and discretized into 46
elements (Fig. 6.12). The total simulation time is 20 years. The corresponding
material properties are listed in Table 6.4. The relative permeability and suction
vs. saturation data are fitted by the characteristic functions which are illustrated
in Fig. 6.13. Additionally, the van Genuchten parameters of the rock are given
in Table 6.4.

The initial liquid saturation for the bentonite is S = 0.65 and for the rock S=1.0.
The only boundary condition is fixed and located in a 16.36 m distance to the
bentonite ring, i.e. at the very right side of the model domain, where the rock
is assumed to be fully saturated (S = 1.0).

Figure 6.12: Computational domain with IC and BC
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Results

The left diagram of Fig. 6.14 shows the distribution of water saturation along
the model domain at different times. The saturation within the bentonite in-
creases continuously with the simulation time. The water flows from right to left,
i.e. the water of the rock is draining into the bentonite (Fig. 6.12). Therefore,
the water saturation within the granite decreases during the first year, before
the boundary condition at the right of the model domain causes an increase
of the water content until fully saturated conditions are reached. The diagram
on the right of Fig. 6.14 shows the water pressure distribution for different times
which generally demonstrates the same behavior as the water saturation; how-
ever the pressure within the rock does not change considerably. This is a result
of the diverging hydraulic conductivity characteristics of rock and bentonite
(Fig. 6.13). Compared to the bentonite, the relative permeability of the granite
decreases stronger with reducing water saturation, i.e. the pressure changes stay
relatively small.

Table 6.4: Material properties

Symbol Parameter Bentonite Rock Unit

φ Porosity 0.41 0.01 –
ks Saturated permeability ks 1.03e-17 2.0e-21 m2

Sr Residual water saturation 0 – –
Smax Maximum water saturation 1.0 – –
α Van Genuchten parameter 6.673 – 1/m
n Van Genuchten parameter 0.6 – –

Figure 6.14: Distribution of saturation S [-] (left) and water pressure p
[Pa](right) in bentonite and granite
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6.2 Dual Continua

The following two dual continua models are based on the assumption that the
flow processes in the rock mass are governed by the dual continuum Richards’
equations (6.6) and (6.8). The simplified one-dimensional test cases were de-
signed to describe fluid flow in densely fractured rock that could potentially hold
a nuclear waste repository and have been applied for code comparison [104, 105].

Definition

The matrix allocates 95% and the fracture 5% of the overall pore space in both
examples (Fig. 6.15). Model A is a 60 cm long vertical column discretized by
60 line elements. Model B has 133 elements and is 40 cm long. Aside from the
small finite element sizes (1 cm or 0.3 cm), very small time step sizes (1e-07 -
1e-05 s) are required to ensure an accurate solution.
In model A, the initial conditions of both continua are set as a linear pres-

sure gradient, from −27, 440 Pa at the top to −21, 560 Pa at the bottom. The
boundary conditions of the fracture and matrix are identical and fixed at the
top with 98 Pa but with a free drainage at the bottom (Fig. 6.15). The hy-
draulic properties of the fracture and matrix pore systems are described by a
van Genuchten parameterization and presented in Table 6.5.

Model B is based on the example presented by Gerke and van Genuchten (1993)
[104], who assumed a constant infiltration rate of 50 cm/d. The infiltration
goes exclusively into the fracture pore area and therefore the matrix continuum

Figure 6.15: Model domain with initial and boundary conditions as well as con-
tinuum quantity
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Table 6.5: Properties and parameters of model A

Symbol Parameter Value Unit

Preferential factor 0.95 –
Matrix φ Porosity 0.498 –
continuum Sr Residual water saturation 0.0 –

Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 1.8 1/m
n Van Genuchten parameter 1.8 –
ks Saturated permeability 2.32368e-13 m2

Preferential factor 0.05 –
Fracture φ Porosity 0.6 –
continuum Sr Residual water saturation 0.0833 –

Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 5.6 1/m
n Van Genuchten parameter 2.68 –
ks Saturated permeability 1.09000e-11 m2

Transfer α∗ Transfer coefficient 500 (1/m2)

recieves water only from the transfer. The initial conditions for both the matrix
and fracture continuum are uniform and identical with hMw = hFw = −10 m or
pMw = pFw = −98, 000 Pa respectively. The details of model B are illustrated at
the right of Fig. 6.15. The apparent permeability of the transfer term is kα =
0.01× 0.5[kα(p

M
w ) + kα(p

F
w)]. All hydraulic parameters for kα(pw) are assumed

to be identical with those for kMα (pMw ), besides the saturated permeability which
is reduced by a factor of 100. The relevant model parameters for the fracture
and matrix continuum, as well as the transfer term, are listed in Table 6.6.

Results

The simulations of model A have been performed first with a single continuum
approach to compare the results of OGS and HYDRUS code. Figure 6.16 shows
the corresponding water pressure distributions in the column at the time of 20
min and 30 min. The results of HYDRUS are given by symbols. The OGS results
are represented by lines, i.e. the pressure fronts in the matrix are illustrated by
solid lines and those of the fracture by dashed lines. Second, the dual continua
implementation of OGS has been compared with the dual-permeability model
S1D DUAL [105, 113] and is presented in Fig. 6.17. The blue lines are the results
without the transfer term, i.e. for the independent single continuum. The red
lines (OGS) and symbols (S1D DUAL) depict the effect of the dual permeability
approach. In this model domain, the matrix continuum is the dominant part of
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Table 6.6: Properties and parameters of model B

Symbol Parameter Value Unit

Preferential factor 0.95 –
Matrix φ Porosity 0.5 –
continuum Sr Residual water saturation 0.21052 –

Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 0.05 1/m
n Van Genuchten parameter 1.5 –
ks Saturated permeability 1.2419e-14 m2

Preferential factor 0.05 –
Fracture φ Porosity 0.5 –
continuum Sr Residual water saturation 0.0 –

Smax Maximum water saturation 1.0 –
α Van Genuchten parameter 5.6 1/m
n Van Genuchten parameter 10 –
ks Saturated permeability 2.3596e-11 m2

Transfer α∗ Transfer coefficient 120 (1/m2)

Figure 6.16: Model A with single continuum approach: comparison of the pres-
sure distribution after 20 and 30 min

the whole system and therefore the influence on the water pressure in the matrix
is less than in the fracture. The resulting pressure and saturation contours at
different times of model B are given in Figs. 6.18 and 6.19.
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Figure 6.17: Model A with dual permeability approach: comparison of the pres-
sure distribution of two different codes in contrast to the single
continuum results

Figure 6.18: Simulated water pressure profiles of model B showing the results
in the matrix (solid lines) and fracture (dashed lines)
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Figure 6.19: Simulated water saturation profiles of model B showing the results
in the matrix (solid lines) and fracture (dashed lines)
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Chapter 7

Overland Flow

by Jens-Olaf Delfs, Martin Beinhorn, and Yajie Wu

This chapter deals with surface runoff which is flow over the land surface gen-
erated by precipitation, melting of snow, or other sources. Typically, not all
precipitation or snow produces runoff because storage from soil and plant roots
can absorb substantial amounts of water. Infiltration excess ([114]) overland
flow occurs when precipitation exceeds the rate at which water infiltrates into
the soil (Test case Sect. 7.2). Urbanization leads to more pronounced flow max-
ima during storm events, when impervious surfaces such as pavement force the
runoff directly to the stream (Test case Sect. 7.1).

Horizontal flow over a flat or moderately flat surface is described by the Saint-
Venant Shallow Water Equations which read

φo
∂H

∂t
+∇Hv = q (7.1)

∂v

∂t
+ v · ∇v + g∇h = g(S0 − Sf )

where H , surface water depth, and v, flow velocity, are primary variables, g =
9.81 m/s2 is the gravitational acceleration, h = H + b the surface water height,
b the bottom height, S0 = −∇b the surface slope, Sf the friction slope, q
represents external sources / sinks, and 0 ≤ φo ≤ 1 is the surface porosity
to incorporate depression storage. Equations (7.1) can be derived from the
Reynolds averaged Navier Stokes Equations by integrating over water depth
H and assuming hydrostatic pressure p = ρg(h − z), where ρ is the water
bulk density (e.g. [115]). The result is a depth-averaged flow field v(x, y),

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 7, © Springer-Verlag Berlin Heidelberg 2012
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where turbulence and surface friction effects are finally incorporated in empiric
resistance to flow relationships, i.e. the velocity v is a power function of the
water depth H . The general form of a resistance to flow relationship for 1D
flow in an irregular channel (which involves an additional averaging over the
channel breadth) is given by

v = CSjfR
m
H (7.2)

where j, m are parameters, v(l) is the flow velocity in the channel course l,
RH(l) = A/P the hydraulic radius of the channel, A(l) its cross-section, and
P (l) the wetted perimeter. Remark that RH = H for 2D overland flow, j = 1/2,
m = 2/3 result in the relationship by Manning where n = 1/C is a surface
roughness parameter, and j = 1, m = 2 in the relationship by Darcy-Weisbach
for laminar flow. Neglect of the inertial terms simplifies (7.1) to the diffusive
wave shallow water equation, which reads

φo
∂H

∂t
−∇ · CHR

m
H

|∇h|1−j∇h = q (7.3)

Further neglect of the hydrostatic pressure term in (7.1) leads to the kinematic
wave equation reading

φo
∂H

∂t
+ C(m+ 1)RmH∇H = q (7.4)

Equations (7.1)–(7.4) allow to simulate small-amplitude waves (surface runoff,
flood waves). The diffusive wave approximation (7.3) can capture backwater
phenomena and the Saint-Venant Equations (7.1), further, dam break waves.
Conditions for the applicability of the Saint-Venant approximations (kinematic
and diffusive wave) are stated for instance in [116], while shallow water equations
to reproduce large-amplitude waves (e.g. ocean waves) can be found in [117].

External forcing (precipitation, infiltration, outflow, etc.) can be incorporated in
the surface flow Equations (7.1)–(7.4) with source /sink terms q. A normal depth
qnorm sink term assumes that water flows under uniform (normal) conditions at
a downstream boundary while a critical depth qcrit sink term represents free
outfall:

qnorm = −CSjoHm (7.5)

qcrit = −
√
gH3 (7.6)

A [118] term qGA provides an effective precipitation rate qeffprec = qprec − qGA

for overland flow on an infiltrating surface. Since water infiltrates into dry soil
as a sharp wetting front, the Green and Ampt infiltration model assumes that
soil saturation above and below the wetting front and the soil-water suction
immediately below the wetting front remain constant. The infiltration source
term qGA(t) and the depth of the wetting front a′(t) read
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qGA = K ′
(
Ψcd −H

a′

)
(7.7)

a′ =

∫ t
0 qGA(s) ds

ΔΘ
.

where Ψcd the effective capillary drive, K ′ is related to the saturated soil hy-
draulic conductivity in Sect. 6, and ΔΘ the initial moisture deficit. Interactions
between water flowing on the land surface and the underlying soils (Sect. 6) can
be addressed with a coupling flux

qcp = −Λ

(
H +

pc
ρg

)
(7.8)

where Λ is the leakance and pc the capillary pressure at the surface-soil-
interface (6.1).

7.1 Surface Flow on a Tilted V-Catchment

7.1.1 Definition

In the synthetic test case by [119] precipitation with a rate of 3 · 10−6 m/s is
applied for 90 min on an impervious V-catchment followed by a recession period
of an additional 90 min. The V-catchment consists of two sloping planes 800 m
wide and 1, 000 m long joined by a 20 m wide and 1000 m long channel. At the
catchment base (channel region) the surface roughness was reduced (Table 7.1)
and the slope set at S0 = 0.02. The hillslopes additionally have a slope of
S0 = 0.05 towards the channel. At the channel outlet the water leaves free-
falling (critical depth sink term (7.6)) while at the remaining boundaries no-flow
is imposed. A structured (rectangular) grid (100 m × 100m) and a time-step
maximum length of 1 min are selected.

7.1.2 Solution

Figure 7.1 compares the critical depth outflow of different surface runoff simu-
lators. The simulated hydrographs reach a maximum roughly after 60 min and
all water has almost left the catchment after the simulation time of 180 min.

Table 7.1: Material properties

Symbol Parameter Value Unit

n Manning friction (Hillslope) [0.015] s/m1/3

n Manning friction (Channel) [0.15] s/m1/3
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Figure 7.1: Runoff at channel outlet for tilted V-catchment test case.

7.2 Infiltration Excess (Horton) Overland Flow

7.2.1 Definition

In the classic experiments by [120] a light oil was applied with a constant rate
of qprec = 6.944× 10−5 m/s for 15 min on an initially drained soil flume with
a length of 12.2 m, a width of 0.051 m and a uniform slope of 0.01. Measured
outflow at the lower flume end is compared with 1D surface runoff simulations
for a grid size of 12.2 cm and a constant time step length of 1 s. Parameters are
stated in Table 7.2 for flow resistance (7.2), a Green Ampt source term (7.7),
and a Richards model which is coupled via a flux (7.8). A critical depth sink
term (7.6) is assigned at the flume outlet.

7.2.2 Solution

Figure 7.2 compares measured surface runoff qrf = −qcrit/A, where A is the
flume surface area, with model predictions at the flume outlet. First, precipi-
tation completely infiltrates (stage I). After about 7 min surface runoff starts
and produces a fast rising hydrograph (stage II). As soon as precipitation from
the entire flume surface has reached the outlet, the hydrograph turns flat. The
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Table 7.2: Material properties

Symbol Parameter Value Unit

n Darcy-Weisbach friction [1333333] 1/(ms)
K Conductivity (Green and Ampt model) [2.4× 10−5] m/s
Ψcd Effective capillary drive [0.13] m
ΔΘ Initial moisture deficit [0.3] −
K Conductivity (Richards model) [2.83× 10−5] m/s
φ Porosity [0.42] −
Sr Residual saturation [0.053] −
α Van Genuchten parameter [6] 1/m
m Van Genuchten parameter [4] −
Λ Leakance [0.001] 1/s
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rf
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Figure 7.2: Comparison of measured and simulated Horton overland flow

infiltration rate continues to decline as the soil becomes saturated so that sur-
face runoff still increases in the later part of the experiment (stage III). The
experimental hydrograph exhibits a considerable dip during stage III which is
attributed to gas phase movement ([120]).
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Chapter 8

Gas Flow

by Ashok Singh and Olaf Kolditz

The subject of this chapter is the movement of gases in porous media. In con-
trast to groundwater hydraulics, gas flow is more complicated because of its
compressibility. Significant variations in gas density and viscosity can result
also from temperature fluctuations (so-called Klinkenberg effect). According to
the kinetic theory of gases, its viscosity should not depend on pressure. This is
not necessarily the case for conditions typically existing in natural gas reservoirs
[121]. At a fixed temperature, the viscosity of gas can vary by tens of percents as
the formation pressure changes by a few Mega Pascale. Another problem con-
cerns the evidence of turbulent flow, which results in additional friction effects.
The present study is verified with existing analytical solutions. Simulation of
compressible flows in porous media is necessary for different applications such
as air movement in soils, gas production or CO2 storage if carbon dioxide is
injected in a gaseous state.

The theory of gas seepage was developed first by [122], [123], and [124], who
worked out a number of analytical approximations to solve the nonlinear prob-
lem. To this end, the following assumption is made

• Gravitational forces are neglected

• No phreatic surfaces are formed

• Idealized material properties

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 8, © Springer-Verlag Berlin Heidelberg 2012
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The state of the compressible fluid within a considered closed system may be
isothermal (const. temperature), adiabatic (const. heat content), or polytropic
(const. change of heat content).

The equation of gas flow in a porous medium can be derived from the mass
balance of gas

∂(nρ)

∂t
+∇ · (ρnv) = ρQρ (8.1)

where ρ is gas density, v is velocity vector, n is porosity and Qρ is source/sink
term.

The equation of state for an ideal gas represents its compressibility as pressure
and temperature changes.

ρ =
pM

RT
(8.2)

where p is gas pressure, R is the universal gas constant, M is the molecular
weight of gas and T is temperature in Kelvin.

Since gas density ρ is dependent on pressure and temperature, for compressible
gas flow themass balance equation (8.1) becomes

n

p

∂p

∂t
− n

T

∂T

∂t
+

1

p
∇p− 1

T
∇T +∇ · (nv) = Qρ (8.3)

The momentum balance equation can be expressed in the form of an extended
Darcy’s law for non-linear flow

nv = −k

μ
∇p (8.4)

where k is permeability tensor, μ is fluid viscosity. The gas mass balance equa-
tion reads as

n

p

∂p

∂t
− n

T

∂T

∂t
+

1

p
∇p− 1

T
∇T −∇ · (k

μ
∇p) = Qρ (8.5)

which is a non-linear equation with respect to gas pressure p. For the isothermal
case, temperature related term should be neglected and for the nonisothermal
case, the temperature value can be obtained from the heat transport equation.

We present the following two benchmarks for verification of the compressible
gas flow code. In the first benchmark, density is changing due only to pressure
and temperature remaining constant, i.e. isothermal case, whereas in the sec-
ond benchmark we proved the phenomenon of Joule-Thomson processes during
carbon sequestration and enhanced gas recovery.

• Isothermal compressible gas flow (8.4)
• Joule-Thomson cooling processes (8.5)

At the end of the chapter we present an application example dealing with:

• Air flow through porous medium (Sect. 8.6)
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8.1 Material Functions

For non-isothermal air flow we have to consider the pressure and temperature
dependencies of air viscosity μ(p, T ) (Sect. 8.1.1) as well as specific heat capac-
ities cp(p, T ) and heat conductivities λ(p, T ) (Sect. 8.1.2) ([125]).

8.1.1 Air Dynamic Viscosity

The Reichenberg viscosity model ([126]) is used for the non-isothermal flow of
air. The pressure and temperature dependencies of air viscosity are shown in
Fig. 8.1.

μ(p, T ) = μ0(T )

(
1 +

Ap
3
2
r

Bpr + (1 + CpDr )
−1

)
(8.6)

with the following parameters:

pr =
p

pcrit
Tr =

T
Tcrit

A = α1

Tr
exp(α2T

a
r ) B = A(β1Tr − β2)

C = γ1
Tr

exp(γ2T
c
r ) D = δ1

Tr
exp(δ2T

d
r )

(8.7)

pcrit = 33.9× 104Pa Tcrit = 126.2K
α1 = 1.9824× 10−3 α2 = 5.2683 a = −0.5767
β1 = 1.6552 β2 = 1.2760
γ1 = 0.1319 γ2 = 3.7035 c = −79.8678
δ1 = 2.9496 δ2 = 2.9190 d = −16.6169
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Figure 8.1: Air viscosity as a function of temperature (in Kelvin) and pressure
(in Pa)
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8.1.2 Thermal Properties
Along with the flow characteristics such as air viscosity, the thermal properties,
such as heat capacity and thermal conductivity of the gas and solid, are impor-
tant for heat transport. As an example, Fig. 8.2 depicts the thermal properties
of the gas. Figure 8.2 (left) shows the temperature dependence of specific heat
capacity of air at atmospheric pressure corresponding to (8.8) from [127] and
compared with experimental data by [128]. Figure 8.2 (right) illustrates the
temperature dependence of thermal conductivity of air at the atmospheric pres-
sure corresponding to (8.9) from [127] and compared with experimental data by
[128]. The pressure dependency of thermal properties can be neglected in the
present pressure regimes.

cp = a0 + a1T + a2T
2 + a3T

3 + a4T
4 (8.8)

where coefficients a0 = 1.0613; a1 = −4.3282 × 10−4; a2 = 1.0234 × 10−6;
a3 = −6.4747× 10−10; a4 = 1.3864× 10−13.

λ = b0 + b1T + b2T
2 + b3T

3 + b4T
4 + b5T

5 (8.9)

where coefficients b0 = 7.488× 10−3; b1 = −1.7082× 10−4; b2 = 2.3758× 10−7;
b3 = −2.2012× 10−10; b4 = 9.46× 10−14; b5 = −1.579× 10−17.

8.2 Element Test

8.2.1 Definition

This example is presented for the code verification of different element types,
i.e. lines, triangles, quads, tetrahedra, triangle prisms and hexahedra [129]. We
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Figure 8.2: Thermal properties of air: specific heat capacity (left), thermal con-
ductivity (right)
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consider flow of a compressible fluid through the porous medium. In this case
the hydraulic conductivity is pressure dependent.

The discretization with different element types is shown in Fig. 3.15. The initial
gas pressure distribution is equal to 1.01325× 105Pa; everywhere in the model
domain. There are Dirichlet boundary conditions set at the left end, i.e. pg(x =
0m) = 9.5500× 104Pa, and the right end, i.e. pg(x = 100m) = 1.01325× 105Pa,
in order to extract gas from the domain. The material parameters of the fluid
and the porous medium are given in Table 8.1.

8.2.2 Results

Figure 8.3 depicts the temporal evolution of gas pressure at the observation
point at the outlet. The numerical results of all implemented element types

Table 8.1: Material parameters

Symbol Parameter Value Unit

L Model length 0.05 m
A Cross section area 1 m2

μ Dynamic viscosity 1.78×10−5 Pas
n Porosity 0.005 −
k Permeability 2.77×10−19 m2

Δt Time step 3× 102 s
Δx Space step 0.005 m
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Figure 8.3: Evolution of gas pressure at the outlet observation point
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compare very well. Small deviations occur from different numbers of Gauss
integration points.

8.3 Verifications

Two test examples are presented for 1-D compressible gas flow in a porous
media. Analytical solutions exist for both under the steady state condition. The
first test case deals with density changing with pressure only, i.e. isothermal
case (Sect. 8.4). The second example shows Joule-Thomson processes with heat
dissipation during carbon sequestration and enhanced gas recovery.

8.4 Isothermal Compressible Gas Flow

8.4.1 Definition

We consider a simple 1D test example where gas is injected at a constant pres-
sure into the porous medium. The material parameters are summarized in
Table 8.2.

8.4.2 Solution

Analytical Solution

For isothermal flow with Dirichlet boundary conditions, i.e. p(x = 0, t) = p1
and p(x = L, t) = p2, there exists an analytical solution,

p(x) =

√
(p22 − p21)

x

x2 − x1
+ p21 (8.10)

which is used for verification of the present numerical solution.

According to Darcy’s law (8.4) the volumetric gas flux at reference conditions
can be approximated as follows

Q0 = A
T0
T ∗p0

k

μ

(p22 − p21)

2(x2 − x1)
(8.11)

Numerical Solution

The numerical model consists of 100 line elements connected by 101 nodes along
the x-axis. The distances of the nodes Δx is one meter. At x = 0 m there is a
constant pressure boundary value of 3× 106 Pa. Whereas at x = L the pressure
boundary value is 1.01325× 105 Pa.
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Table 8.2: Model parameters

Symbol Parameter Value Unit

L Model length 100 m
A Cross section area 1 m2

n Porosity 0.35 −
k Permeability 2.7× 10−11 m2

μ Gas dynamic viscosity 1.76× 10−5 Pa s
p0 Initial condition 101325 Pa
p1, p2 Boundary conditions 3× 106, 1.01325× 105 Pa
Δt Time step 1, 10, 102, 103, 104 s
Δx Space step 1 m

8.4.3 Results

Figure 8.4 shows the comparison of the present numerical solution with the
analytical. Steady state is reached after about 1.0× 104 s.

8.5 Joule-Thomson Cooling Processes

8.5.1 Definition

Flow in permeable media is not an isothermal process because there is a tem-
perature change resulting from fluid expansion and viscous dissipation heating.
The test benchmark is formulated for the injection of compressed cryogenic
CO2 in a one-dimensional horizontal reservoir column. Material parameters are
presented in Table 8.3.

8.5.2 Solution

Analytical Solution

For such a case there exists an analytical solution (Singh et al. [130]) with the
boundary value at x = 0 is T0 and at x = L is ∇T = 0.

T = L+ exp(m+ x) + L− exp(m− x) +
1

βT
(8.12)

where

m± = ux

⎛
⎝ ρcp
κeff

±
√(

ρcp
κeff

)2

+
4βTμ

kκeff

⎞
⎠



www.manaraa.com

156 CHAPTER 8 GAS FLOW

x in [m]

P
re

ss
u

re
 in

 [
P

a]

0 10080604020

500000

1E+06

1.5E+06

2E+06

2.5E+06

3E+06

TIME=1.0e+00
TIME=1.0e+01
TIME=1.0e+02
TIME=1.0e+03
TIME=1.0e+04
STEADYSTATE

Figure 8.4: Comparison of analytical (•) and numerical solutions

Table 8.3: Model parameters

Symbol Parameter Value Unit

L Column radius 100 m
n Porosity 0.35 −
ρ, ρs Densities pM

zscRT
, 2460 kg m−3

k Permeability 2.7× 10−11 m2

μ Dynamic viscosity 1.9836× 10−5 Pa s
κ, κs Heat conductivities 0.02.6374, 2.5 W m−1K−1

cp, c
s
p Heat capacities 1.067× 103, 1.2× 103 Jkg−1K−1

βT Thermal expansivity − 1
ρ0

∂ρ
∂T K−1

and L+ and L− are integration constants to be determined by boundary condi-
tions.

Numerical Solution

The finite element solution has been obtained through solving the mass and
energy balance equations. Within a time step, the mass balance equation for
pressure is solved with temperature changes and in return the energy balance
equation is then solved for temperature with obtained fluid velocity. This is the
so called staggered approach and is executed until the solution become steady.

The physical domain has been discretized in 100 line elements, in which size
varies between Δx = 0.4 m to Δx = 4.3498 m. This helps to capture the sharp
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Figure 8.5: Comparison of present solution (FEM) with analytical solution due
to (8.12)

gradient of temperature present near the injection point. at the time step size
is Δt = 1 s at the beginning of the simulation, with step by step increases until
it reaches Δt = 1.0× 104 s.

8.5.3 Results

Based on the above findings, OpenGeoSys (OGS) is capable of showing the
Joule-Thomson process in carbon sequestration with enhanced gas recovery. In
Fig. 8.5 we have presented the comparison of the temperature profile produced
from OGS with those of the analytical solution, i.e. (8.12). In the figure,
‘without solid matrix’ represents the case in which we do not account for
heat provided by the solid matrix by setting csp = 0, κs = 0 whereas ‘with solid
matrix’ shows the case in which we have accounted for heat provided by the
solid matrix.

The figure shows that as we inject CO2 (at temperature 393.15 K which is
lower than the inversion temperature ≈ 1, 500 K), its pressure falls with a high
gradient. It means as expansion starts, the average distance between molecules
grows. Because of intermolecular attractive forces, expansion causes an increase
in the potential energy of the gas. As no external work is extracted and the
process is adiabatic, the total energy of the gas remains constant due to the
conservation of energy. The increase in potential energy thus implies a decrease
in kinetic energy and therefore the temperature falls.

8.6 Air Flow Example

8.6.1 Definition

We consider the same test example definition as for isothermal gas flow in
Sect. 8.4. Now we use pressure and temperature dependent material proper-
ties described in Sect. 8.1. The model parameters are summarized in Table 8.4.
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Table 8.4: Model parameters

Symbol Parameter Value Unit

L Model length 100 m
n Porosity 0.35 −
ρ, ρs Densities (8.2), 2650 kg m−3

k Permeability 2.7× 10−11 m2

μ Dynamic gas viscosity (8.6) Pa s
p0 Initial condition 101325 Pa
T0 Initial condition 288 K
p2 Boundary condition 101325 Pa
T1 Boundary condition 343 K
Qρ Injection rates 1− 10 kg s−1

αL, αT Heat dispersion length 1, 0.1 m
λg, λs Heat conductivities (8.9), 2.5 W m−1K−1

cgp, c
s
p Heat capacities (8.8), 2300 Jkg−1K−1
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Figure 8.6: Hydraulic profiles evolution: Air pressure (top), Air velocity (bot-
tom)

8.6.2 Solution

The numerical model consists of 100 line elements connected by 101 nodes along
the x-axis. The distance of the nodes Δx is one meter. At x = 0m, we inject air
with rates of 1 kg s−1 and 10 kg s−1, and the temperature is 343 K. At x = L
the pressure boundary value is 1.01325× 105Pa and ∇T = 0.
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8.6.3 Results

Figure 8.6 show the air pressure (left) and velocity distributions (right) along
the soil column. Simulations were run with constant viscosities and those cor-
responding to the Reichenberg model (Sect. 8.1.1) which takes pressure and
temperature changes into account.

The corresponding temperature profiles for different air injection rates are de-
picted in Fig. 8.7. The different shapes of the thermal profile curves indicate the
transition between diffusion (left) and advection dominated regimes (right).
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Figure 8.8 shows the temporal evolution of the air pressure profile for non-
isothermal air flow. In order to see the non-isothermal effects we plotted the
analytical steady state solution for isothermal flow along with the present numer-
ical solution for non-isothermal flow. As a consequence of the viscosity increase
resulting from the Reichenberg model, the steady state pressure is larger for
non-isothermal conditions.
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Chapter 9

Deformation Processes

by Uwe-Jens Görke, Norihiro Watanabe, Joshua Taron, and Wenqing Wang

This chapter is dedicated to the analysis of pure deformation processes in solid
continua. Within the context of porous media mechanics, the generalized lo-
cal momentum balance (2.100) discussed in Sect. 2.5.1 serves as the governing
equation describing mechanical deformation. In fact, the specific expression
of the momentum balance (2.100) defines the equilibrium conditions in porous
media here, considering swelling and thermal stresses caused by the coupling of
mechanical to other physical and chemical processes. The effective stress prin-
ciple has been established in order to define the stress state in the solid skeleton
of porous media (cf. Sect. 2.5.1). Within this context, σeff indicates the stress
tensor applied to a substitute continuum representing the solid skeleton smeared
over the volume of the porous medium under consideration, and being charac-
terized by a reduced partial density compared to the material density of the
solid skeleton. Material models, which are well-known from solid mechanics,
are transferred directly to the description of the material behavior of the solid
skeleton in porous media mechanics.

Assuming small strains, the equilibrium conditions in solid mechanics are defined
by the following specific formulation of the balance of linear momentum:

∇ · σ + ρg = 0 (9.1)

where σ is the Cauchy’s stress tensor, ρ is the mass density and ρg is the
volume force with the gravity vector g . The coefficients of the displacement
vector u are the primary variables, which will become evident introducing an
appropriate constitutive relation describing the specific stress-strain behavior of

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 9, © Springer-Verlag Berlin Heidelberg 2012
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the material under consideration into the weak formulation of (9.1). For more
details about the systematics of typical material classes see Sect. 2.5.2.

In general, the deformation problem can be considered as an initial-boundary
value problem with Neumann type and Dirichlet type boundary conditions,
accordingly given by

σ ··n = t or u = uΓ, ∀x ∈ ∂Ω (9.2)

where n defines the normal vector for the part of the surface with given traction
boundary conditions t , and uΓ are prescribed boundary displacement values.

Subsequently, the following benchmarks for deformation problems with increas-
ing complexity (e. g., regarding the material behavior) are presented:

Elasticity:

• Plane strain confined compression (9.1.1)
• Plane strain confined compression—Excavation in homogeneous media
(9.1.2)

• Plane strain confined compression—Excavation in heterogeneous media
(9.1.3)

• Strain driven three-dimensional unconfined compression (9.1.4)
• Load driven three-dimensional unconfined compression (9.1.5)
• Nonlinear elastic axisymmetric triaxial compression (9.1.6)
• Transverse isotropic elastic tensile test (9.1.7)

Elastoplasticity:

• Compression of a plate with a hole (9.2.1)
• Two-dimensional strain localization problem (9.2.2)
• Cam-Clay plasticity (9.2.3)

Viscoplastic creep:

• Creep of a thick-walled cylinder (9.3.1)
• Thermally driven creep in rock salt (9.3.2)
• Stationary creep in rock salt (9.3.3)
• Transient creep in rock salt (9.3.4)

9.1 Elasticity

For small strains of solid continua, it is mostly justified to assume isotropic elas-
tic material behavior. Most substantial details of the theory of linear isotropic
elasticity, represented by the generalized Hooke’s law, are discussed in Sect. 2.5.3.
In many technical applications considering small strains, the elastic material
parameters are assumed to be constant and the stress-strain curves are nearly lin-
ear. However, the typical response of certain geological materials to monotonic
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loading (without load reversal) shows a nonlinear stress-strain behavior. Con-
sidering only elastic effects during load application, Hooke’s law cannot be used
to describe the observed material properties. Therefore, so-called pseudo-elastic
constitutive models are frequently used for the analysis of nonlinear stress-strain
curves, particularly in soil and rock mechanics. In a generalized manner, they
are based on the assumption of an explicit stress-strain relation considering a
stress- and strain-dependent material matrix:

σ = C
4

(σ , ε) ·· εel . (9.3)

Based on the so-called Lubby1 model (cf. [131]), a nonlinear elastic approach
with strain-dependent Young’s modulus

E(εv) =
E0

1 + a εnv
(9.4)

but constant Poisson’s ratio is proposed. Here, εv is the equivalent strain, and
E0, a, as well as n, are material parameters. The equivalent strain is defined by

εv =

√
2

3
εel ·· εel . (9.5)

If the material properties are independent of the orientations and directions of
the technical or natural object under consideration, the material behavior is
called isotropic. Otherwise, the material is known as anisotropic. Anisotropy
is closely connected with distinguished orientations in the material structure.
Among others, fiber-reinforced and layered materials are typical anisotropic
materials.

From the point of view of modeling and numerical simulation, special cases of
anisotropy such as orthotropy are of particular interest. Orthotropic materials
are characterized by mutually orthogonal two-fold axes of rotational symme-
try. A special class of orthotropic materials represent the so called transverse
isotropic materials. They are characterized by a plane of isotropy featuring the
same material properties independent of the direction of observation within this
plane, and different material properties in the direction normal to this plane.
Within this context, the normal to the plane of isotropy can be considered as the
direction of anisotropy. Most layered materials, biological membranes as well
as rocks (e. g. sandstone, shale), can be considered as transverse isotropic ones.

In case of transverse isotropy, the Hooke’s law (2.104) has to be modified estab-
lishing a unit vector a which defines the direction perpendicular to the plane of
isotropy (normal vector, direction of anisotropy—defining, e. g., the direction of
a single fiber family of a fiber-reinforced material).
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σij =λ δij εkk + 2μT εij

+ 2 (μL − μT ) (ai εjl al + al εli aj)

+ α (ai aj εkk + ak εkl al δij)

+ β ak εkl al ai aj (9.6)

Linear elastic transverse isotropic material is characterized by five independent
material parameters like λ, μT , μL, α and β given in (9.6). In some cases these
parameters are called invariants of the transverse isotropic elastic Hooke’s law.
They can be defined w.l.o.g. by the following (engineering) elastic constants
which can be obtained experimentally:

Ei – Young’s modulus within the plane of isotropy,

νi – Poisson’s ratio within the plane of isotropy,

Ea – Young’s modulus w.r.t. the direction of anisotropy,

νia, νai – Poisson’s ratio w.r.t. the direction of anisotropy,

Ga – shear modulus w.r.t. the direction of anisotropy.

There exist some relations between these parameters.

Gi=
Ei

2(1 + νi)
= μi (shear modulus within the plane of isotropy) (9.7)

νai= νia
Ea
Ei

(9.8)

As mentioned above, the invariants of the transverse isotropic elastic Hooke’s
law can be expressed by the presented elastic parameters.

λ =
Ei(νi + νiaνai)

D̃

μT = Gi

μL = Ga

α =
Ei(νai(1 + νi − νia)− νi)

D̃

β =
Ea(1− ν2i )− Ei[(νi + νiaνai) + 2(νai(1 + νi − νia)− νi)]

D̃
− 4Ga + 2Gi

with D̃ = 1 − ν2i − 2 νia νai − 2 νia νi νai

= (1 + νi)(1 − νi − 2 νia νai)
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The coordinates of the material tensor for a linear elastic transverse isotropic
material are defined as follows:

Cijkl = λ δij δkl + 2μT δik δjl

+2 (μL − μT ) (ai δjk al + ak δil aj)

+α (ai aj δkl + ak al δij)

+ β ai aj ak al (9.9)

9.1.1 Plane Strain Confined Compression

Definition

This example deals with numerical analyses of a part of the whole rock mass
based on special conditions concerning symmetry, structure of the rock mass and
material behavior. Imposition of an initial stress state as a function of depth
requires the application of a single boundary stress to represent loading from
the overburden. In addition to this, the stresses decrease with depth because of
the gravity and density of the rock mass (Fig. 9.1).

Solution

The calculation area has the size of 50m × 50m (length and height), and the
problem is simplified under plane strain conditions. The quadrilateral mesh
is illustrated in Fig. 9.2(a), which is refined in one corner in order to be used
directly to subsequently conduct an elastic excavation simulation.

Regarding boundary conditions, a uniformly distributed pressure of 23.75MPa
is prescribed for the top boundary. Such kinds of boundary conditions are so
called tractions in the context of mechanics, and they are treated as Neumann

g

Figure 9.1: Conceptual model of elastic foundation
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Figure 9.2: Finite element model. Left: Spatial discretization (1,150 quadrilat-
eral elements, 1,101 nodes); Right: Boundary conditions

Table 9.1: Material parameters

Symbol Parameter Value Unit

E Young’s modulus 25 GPa
ν Poisson’s ratio 0.3 –
ρ Density 2500 kg·m−3

type boundary conditions. Boundary conditions are illustrated in more detail
in Fig. 9.2(b).

Homogeneous material properties are assumed within the whole domain.
Table 9.1 represents the corresponding material parameters.

For this simple elastic problem, the following analytical solution exists:

σyy = −23.75− ρh (9.10)

where ρ is the solid density and h is the height from top to bottom boundary.

Results

Figure 9.3 (left) shows the distribution of vertical stress in the domain, which
implies that the discretization error is very small. Figure 9.3 (right) shows a
linear variation of stress σyy along with height.

The numerical result of σyy at the bottom boundary is −24.97MPa, which is
very close to the analytic solution, σyy = −25.0MPa.
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g

Figure 9.4: Excavation in rock mass

9.1.2 Plane Strain Confined Compression: Excavation in
Homogeneous Media

Definition

This is the second step of the simulation described in the previous section,
Sect. 9.1.1. A long cylindrical tunnel is driven in the rock mass, which is
schematically shown in Fig. 9.4.
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Solution

The deformation due to the excavation is simulated under the assumption of
plane strain. Finite element mesh, initial conditions and material parameters
are the same as specified in Sect. 9.1.1. The tunnel has a radius of 5m. The
released loading approach is applied to simulate the excavation.

Results

Figures 9.5 and 9.6 shows the distribution of vertical displacements and coeffi-
cients of the stress tensor in the domain after excavation.
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Figure 9.7: Excavation in heterogeneous rock mass

9.1.3 Plane Strain Confined Compression: Excavation in
Heterogeneous Media

Definition

Differing from the homogeneous case, the deformation of the excavation prob-
lem defined in Sect. 9.1.2 is analyzed herewith defining the initial conditions as
functions of the coordinates, and assuming four different material domains (cf.
Fig. 9.7).

Solution

The initial stresses are assumed to be linearly distributed within a material
domain. The expressions of these distributions are given in Table 9.2.

As depicted in Fig. 9.7, the domain consists of four different materials denoted
by 1, 2, 3 and 4. Within this context, only the Young’s modulus is assumed to
differ for the material domains under consideration (cf. Table 9.3).

Results

Figure 9.8 shows the distribution of displacements after excavation, and Fig. 9.9
shows the distribution of different coefficients of the stress tensor after
excavation.
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Table 9.2: Initial stress distribution as function of coordinates (in kPa; material
domains cf. Fig. 9.7)

Material Functions for stress coefficients
domain σxx σyy σzz

1 −23.75− 0.2y −23.75− 0.2y cf. σxx
2 −24.75− 0.5y −24.75− 1.3y cf. σxx
3 −26.75− 10.0x− 12.0y −26.75− 20.0x− 16.0y cf. σxx
4 −27.75− 10.0x− 14.0y −27.75− 20.0x− 18.0y cf. σxx

Table 9.3: Material parameters (different Young’s moduli are given in the order
of the material domains)

Symbol Parameter Value Unit

E Young’s modulus 25.0; 26.0; 30.0; 28.0 GPa
ν Poisson’s ratio 0.3 –
ρ Density 2500 kg·m−3
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Figure 9.8: Distribution of displacement (m)

9.1.4 Strain Driven Three-Dimensional Unconfined
Compression

Definition

A quarter of an elastic cylinder is compressed at the top, applying prescribed
uniform deformations as boundary condition (cf. Fig. 9.10). Assuming homoge-
neous isotropic linear elastic material behavior and constant loading, the axial
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Figure 9.9: Distribution of stresses (kPa)

stress coefficient σzz and the displacement vectors in the nodes of the finite
element grid are calculated, which are caused by the given external loading.

Solution

The calculation area for the three-dimensional simulation consists of a quarter
of the cylinder under consideration (cf. Fig. 9.11). The model includes 4,000
elements and 4,947 nodes. Deformations in the x-direction are suppressed in the
y-z-plane and deformations in the y-direction are suppressed in the x-z-plane.
Furthermore, axial deformations are suppressed at the bottom of the calculation
area. At the top of the model, boundary conditions are prescribed assuming
a constant displacement of 0.61 mm causing compression of the cylinder. The
used material parameters are shown in Table 9.4.

In order to solve the homogeneous problem analytically, some constraints have
to be considered: the stresses in the x- and y-direction are equal to zero, because
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Figure 9.10: Calculation area: a quarter of a cylinder

Figure 9.11: Finite element model: spatial discretization and boundary condi-
tions

Table 9.4: Material parameters

Symbol Parameter Value Unit

E Young’s modulus 7 GPa
ν Poisson’s ratio 0.3 –
ρ Density 2, 500 kg·m−3

the body expands homogeneously in the radial direction. Thus the stress-strain
equations defined by Hooke’s law (2.104) can be simplified as follows:

εzz =
Δz

z
=

1

E
· σzz (9.11)

εxx = εxx =
1

E
· (−ν · σzz) (9.12)
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Figure 9.12: Resulting axial strain and axial stress

With the given strain in the z-direction, the axial stress σzz is defined using
(9.11) as

Δz

z
= −2.44× 10−3 and σzz = −1.71× 107 Pa

In this way, the strains in the x- and y-direction are known.

εxx = 7.32× 10−4

Results

As can be seen in Fig. 9.12, the numerical results meet exactly the analytical
solutions. In this figure, axial strain and the resulting axial stress are presented
along a polyline from the top to bottom of the calculation area.

9.1.5 Load Driven Three-Dimensional Unconfined
Compression

Definition

This example is similar to the previous one, differing in the kind of prescribed
external loading: the calculation area undergoes traction boundary conditions
(given surface stress) applied to the top of the model, while resulting deforma-
tion is unknown. In order to easily investigate whether the simulated results
correspond to the analytical solutions, the value of the prescribed axial stress
coefficient σzz on the top of the calculation area is chosen to have the same
value as the resulting one obtained in the previous example.

Solution

The finite element model has the same characteristics as the model in Sect. 9.1.4.
At the top of the model a constant compressive surface stress in the axial di-
rection with a value of 1.71×107Pa is given as the source term. The simulation
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Figure 9.13: Strains and displacement in the z-direction

with OpenGeoSys requires the input of the external load in terms of surface trac-
tions as the source term in the z-direction at the single nodes of the stressed
boundary. The displacement boundary conditions are the same as in the pre-
vious example except for the axial displacement on the top of the model. The
used material parameters are shown in Table 9.4.

Results

The analytical solution and the numerical results are identical to that of the
previous example. The calculated axial displacement as a result of the constant
load on the top of the model is 6.1×10−4m. The numerical results that are
shown in Fig. 9.13 meet the analytical solutions exactly.

9.1.6 Nonlinear Elastic Axisymmetric Triaxial
Compression

Definition

Triaxial short-term compression under axisymmetric conditions is carried out
to verify the nonlinear elastic isotropic material model (modified Lubby1 ap-
proach). The loading in principal axes includes a radial pressure as well as an
axial displacement, and is realized in two steps. It results in a homogeneous
stress-strain state.

Solution

For the calculation, the cross-section of a cylindrical sample with a radius of
30mm and a height of 120mm is studied. Details of the model (geometry, mesh,
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30 mm
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Figure 9.14: Triaxial compression of a cylindrical sample. Axisymmetric model.
Left: Geometry. Right: Finite element grid and boundary condi-
tions

boundary conditions) according to K.-H. Lux and F. Werunsky (unpublished
report, 2008) are presented in Fig. 9.14.

Initial conditions do not have to be given for the problem under consideration.
As the bottom edge is fixed in the vertical direction, the left-hand edge is fixed
in the horizontal direction for symmetry reasons (axis of rotation). On the
right-hand edge, initially a radial casing pressure of 5MPa is applied within
20 seconds with a constant stress rate. While keeping constant this radial pres-
sure, a subsequent stroke-driven axial compressive loading is applied within the
following 1,440 seconds with a constant strain rate. The maximum axial dis-
placement is 6mm which corresponds to a 5% reduction of the sample’s height
(for the complex loading history cf. Fig. 9.15).

The material parameters referring to the modified Lubby1 relation (9.4) are
summarized in Table 9.5. Within this context, the initial Young’s modulus and
the Poisson’s ratio are close to values known for rock salt.
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Figure 9.15: Triaxial compression of a cylindrical sample. Loading history
for short-term experiments. Radial casing pressure (stress rate
ṗr = 0.25MPa·s−1) with subsequent axial displacement (strain
rate ε̇a = 3.47× 10−5 s−1)

Table 9.5: Material parameters

Symbol Parameter Value Unit

E0 Initial Young’s modulus 21.4 GPa
ν Poisson’s ratio 0.335 –
a Factor in (9.4) 2750 –
n Exponent in (9.4) 1.0 –

Results

The representation of the axial stress vs. the axial strain in Fig. 9.16 shows
on exemplarily chosen material parameters the noticeable difference between
the linear (Hooke’s model) and the nonlinear (modified Lubby1 model) elastic
models even at small strains. Within the context of the studied case, the stress
response will be overestimated by a multiple using the linear Hooke’s law.

9.1.7 Transverse Isotropic Elastic Tensile Test

Definition

Tension of a quadratic plate according to Schröder [132], Kohlmeier [133] and
Fiolka [134] is carried out to verify the linear elastic transverse isotropic material
model. Within this context, a laminated material structure perpendicular to the
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Figure 9.16: Triaxial compression of a cylindrical sample. Stress-strain curves
regarding the axial load response. Comparison of linear elastic
(Hooke) and nonlinear elastic (modified Lubby1 (9.4)) material
models

plane under consideration is assumed. The direction of anisotropy within this
plane, which is defined by a vector a is perpendicularly oriented to the material
layers.

Solution

During simulation, the direction of anisotropy is rotated counterclockwise start-
ing with an angle ϕ of ϕ = 0◦ and ending with ϕ = 180◦. Consequently, as
in OpenGeoSys, the direction of anisotropy is assumed to be directed parallel
to the local ȳ-axis, and the angle of rotation is defined as the rotation between
the global x-axis and the local x̄-axis, the input angle changes in the range of
ϕ = −90◦. . . 90◦.

Assuming plane strain conditions for the two-dimensional case, the quadratic
plate has an edge length of l = 10mm, and was analyzed using triangular and
rectangular elements respectively. For details of this model (geometry, boundary
conditions, material orientation) see Fig. 9.17.

To verify the linear elastic transverse isotropic material model in the three-
dimensional case, the tensile test was simulated using a rectangular sample
with an edge length l = 10mm and a height h = 1mm. According to the two-
dimensional case, a vertically arranged laminated material structure is assumed.
The direction of anisotropy, which is defined by a vector a is perpendicularly
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Figure 9.17: Tensile test. Model definition according to Kohlmeier [133]. Vector
a defines the direction of anisotropy

Figure 9.18: Tensile test. Three-dimensional model definition according to
Fiolka [134]. Vector a defines the direction of anisotropy

oriented to the material layers. During simulation, the direction of anisotropy
is rotated counterclockwise in the xy-plane from ϕ = 0◦ to ϕ = 180◦.

Within the context of the different opportunities offered by the input structure
of OpenGeoSys to define the anisotropy direction, the coefficients of the unit
normal vector which is parallel to the direction of anisotropy are given as nx =
cosϕ, ny = sinϕ, and nz = 0. Considering the case that the basis vectors of the
local Cartesian coordinate system for transverse isotropic materials are provided
by consecutive rotations of the plane of isotropy about the global y(x2)-axis and
the x̄(x̄1)-axis of the once rotated system, the angle α has a constant value of
90◦, whereas the angle β changes from 0◦ to −180◦. Using the angles known from
applications in structural geology to generate the constitutive rotation matrices,
the dip φ has the constant value of 90◦, and the azimuth varies from 90◦. . . 0◦

(for 0◦ ≤ ϕ ≤ 90◦) and 360◦. . . 270◦ (for 90◦ ≤ ϕ ≤ 180◦) respectively. For
details of the three-dimensional model (geometry, boundary conditions, material
orientation) see Fig. 9.18.

Initial conditions do not have to be given for the problem under consideration.
The left-hand edge is fixed in the horizontal direction. To avoid rigid body
motions, the left lower corner node is fixed in both the vertical and horizontal



www.manaraa.com

9.1 ELASTICITY 179

directions. A distributed tension load of p0 = 0.2Mpa is applied at the right-
hand edge. In the three-dimensional case, the plane strain condition was re-
alized, preventing any displacement in the z-direction on the upper and lower
boundary surfaces of the sample.

The material parameters are summarized in Table 9.6.

Results

The numerical results obtained with OpenGeoSys are compared to values given
in [133]. They include displacement coefficients of various corner nodes of the
plate depending on the anisotropy direction, and show a good agreement (cf.
Fig. 9.19).

Table 9.6: Material parameters

Symbol Parameter Value Unit

Ei Young’s modulus 561.12 MPa
Ea Young’s modulus 1311.83 MPa
νi Poisson’s ratio 0.6032 –
νia Poisson’s ratio 0.1838 –
Ga Shear modulus 375.00 MPa

Figure 9.19: Tensile test. OpenGeoSys results (symbols) at length l = 10mm
and an edge load of p0 = 0.2Mpa compared to the reference solu-
tion given by Schröder [132] and Kohlmeier [133] (continuous lines)
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9.2 Elastoplasticity

As discussed in Sect. 2.5.4, plasticity is a property of solid materials, which is
characterized by non-reversible deformations and plastic yielding of the mate-
rial. The last mentioned material property can be mathematically described
introducing so-called yield conditions Φpl(σ ). Figure 9.20 illustrates geometri-
cally three typical yield conditions defined in the principal stress space. If the
stress path of any material point is located inside one of these surfaces, the point
undergoes elastic deformation; if it is located on the boundary of the specific
yield surface, plastic yielding is observed. The yield status of a material point
is determined checking the Kuhn-Tucker conditions for loading or unloading:

Φ̇pl ≤ 0, λpl Φpl = 0 or λpl ≥ 0 (9.13)

In metal plasticity, usually so-called associative plasticity models are used, which
are characterized by coaxiality of the plastic strain increment and the normal
vector established in the current stress point of the yield condition. Usually, the
mechanical behavior of geomaterials (in particular soils, and clay-rich materi-
als) is of a more complex nature compared to metals, and depends on porosity,
stress state and direction of external loading. Frequently, shear deformation
(shear bands) associated with strain localization, dilation and/or a coupling
of these properties can be observed. Localization problems are of an unsta-
ble nature, i. e., softening may occur at a certain point of loading. As these
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Figure 9.20: Yield surface
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phenomena cannot be modeled using classical plasticity approaches, usually so-
called non-associated plasticity models are introduced. They are characterized
by the definition of a plastic potential Φ̂pl(σ ) instead of the yield condition.
Within this context, the increment of the plastic strain tensor will still be de-
fined using (2.112), but substituting the yield condition with the plastic poten-
tial. Two typical plastic models suited to address strain localization phenomena
are described below.

Drucker-Prager Model

This model is a function of two stress invariants and a hardening parameter κ
with the following yield condition and plastic potential:

Φpl(σ , κ) =

√
2

3
σd ··σd + α tr(σ ) − y(κ) = 0 (9.14)

Φ̂pl(σ , κ) =

√
2

3
σd ··σd + β tr(σ ) − y(κ) = 0 (9.15)

where α is a coefficient related to the internal frictional angle, y(κ) is the yield
stress depending on the hardening parameter.

Cam-Clay model

Similar to the Drucker-Prager model, the Cam-Clay model is a function of
both the first and second stress invariants. The generalized Cam-Clay model is
defined as:

Φpl(σ , κ) =
2

3
σd ··σd + M2 ps (ps − pscn) = 0 (9.16)

with ps = tr(σ )/3, where M is the slope of the critical state line and pscn is
the isotropic preconsolidation pressure. The rate of ps is given by

d ps
d εvpl

=
(1 + e)ps
λc − κc

(9.17)

where e is the void ratio, εvpl defines the volumetric plastic strain, λc is the virgin
compression index and κc is the swelling/recompression index.

The model also describes the nonlinear elastic behavior of clay-like media before
plastic yielding occurs, in which the bulk modulus K is dependent of stress
status as

K =
1 + e

κc
ps = 0 (9.18)
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9.2.1 Compression of a Plate with a Hole

Definition

Compression and/or tension of a plate with a hole is a typical plane strain
benchmark for the modeling of elastoplastic material behavior, and is defined in
[135]. Here, this example is analyzed to compare the behavior of two approaches
on pure plastic deformation problems.

Solution

In the present simulation, a quarter of the perforated plate is considered because
of the symmetry of the problem. The model set-up is shown in Fig. 9.21. The
radius of the hole is 10mm. Two points (point 1 and point 2) are specified to
monitor the evolution of variables. Point 1 is located at one third of the distance
from point 3 to point 4.

Traction boundary conditions, p = 100 · λ(t)MPa are prescribed on the top,
where λ(t) denotes a time-dependent scaling factor. The particular case of cy-
cling loading is analyzed defining a scaling factor as shown in Fig. 9.22 assuming
λmax = 4.1.

The finite element grid using triangular elements is shown in Fig. 9.23, and the
material parameters obtained from [135] are presented in Table 9.7.

λ�t��p
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4

Figure 9.21: One quarter of the compressed steel plate with a hole
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λ���

−λ���

t

Figure 9.22: Time dependent scaling factor for external loading

Figure 9.23: Finite element grid: 269 nodes and 484 elements

Table 9.7: Material parameters

Symbol Parameter Value Unit

E Young’s modulus 206.9 GPa
ν Poisson’s ratio 0.29 –
σ0 Initial yield stress 0.45 GPa
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Figure 9.25: Evolution of horizontal displacement vs. scaling factor

Results

The load is applied within 60 time steps with a constant increment for the
loading factor Δλ = λmax/10. As shown in Fig. 9.24, plastic strain and vertical
strain show similar distributions, which are typical for elastoplastic material
behavior according to the von Mises model. The evolution of the horizontal
displacement at point 1 and at point 2 as functions of the periodic scaling
factor λ(t) are shown on Fig. 9.25.
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9.2.2 Two-Dimensional Strain Localization Problem

Definition

In this benchmark, a plane strain failure problem is analyzed with triangular and
quadrilateral elements, correspondingly. An enhanced strain approximation is
used to simulate the displacement discontinuity after failure appears. Neighbor
relationships of an element object are essential data for designing the deforming
mesh and to determine the evolution of the discontinuity orientation within the
context of failure analysis.

From the viewpoint of the bifurcation theory, strain localization is a bifurcation
phenomenon, which takes place when the velocity field moves away from the
branch of continuous solutions and follows a new path of discontinuous solutions.
If standard finite elements are applied to this problem, the mesh has to be refined
adaptively near the localization area. Additionally, the system of equations will
be an ill-posed one. The strong discontinuity approach with enhanced strain
elements avoids an ill-posed system of equations, thus avoiding mesh sensitivity
of the analysis [136].

Solution

The set-up of the two-dimensional compression problem as proposed by [137] is
shown in Fig. 9.26. The geometry of the specimen is simplified as rectangular
with the dimensions of 1m×3m.

u

��

��

Figure 9.26: Plane strain two-dimensional localization test
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Table 9.8: Material parameters

Symbol Parameter Value Unit

E Young’s modulus 20.0 MPa
ν Poisson’s ratio 0.4 –
α Factor in (9.15) 0.233345 –
β Factor in (9.15) 0.141421 –
σ0 Initial yield stress 29.69 kPa
H Hardening modulus 100 kPa
Hδ Localized softening modulus −1, 000 kPa

The bottom of the specimen is supported by horizontal roles, and its top surface
is allowed to move only vertically with the axial displacement uz. Both lateral
surfaces are considered to be free of tractions.

The non-associative flow rule is adopted for the Drucker-Prager model with
material parameters presented in Table 9.8.

Results

Figure 9.27 shows the deformed model exhibiting localization. The stress re-
sponse at the top surface to the prescribed displacements is discussed in Fig. 9.28.
These results agree well with data presented in [137].

9.2.3 Cam-Clay Plasticity

Definition

This axisymmetric benchmark is usually discussed to verify a critical state plas-
tic mode, e. g., the Cam-Clay model.

Solution

For the finite element solution, a quarter of a cylindrical specimen is considered
with a diameter of 5 cm and a length of 10 cm. The bottom surface is roller
supported, and a vertical (axial) displacement is prescribed at the top surface
until the specimen is compressed at 50% of the initial length. Displacements
of the top surface in the radial direction are allowed. The lateral surface of
the cylinder is free of tractions. The material parameters are summarized in
Table 9.9.
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Figure 9.27: Deformed contour with distribution of the axial displacements
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Figure 9.28: Axial stress at the top as a function of the axial displacement

Results

The relationship between von Mises type stress, the second stress invariant and
the axial strain is illustrated in Fig. 9.29. The results agree well with data
presented in [138].
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Table 9.9: Material parameters

Symbol Parameter Value Unit

ν Poisson’s ratio 0.30 –
M Slope of critical state line 1.20 –
λc Virgin compression index 0.20 –
κc Swelling / recompression index 0.02 –
pscn0 Initial preconsolidation pressure 60.00 –
e0 Initial void ratio 1.50 –
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Figure 9.29: Axial strain vs. von Mises type stress

9.3 Viscoplastic Creep

Creep is a typical effect of viscoplastic material behavior, and represents a time-
and/or temperature-dependent deformation process of solid continua affected by
constant load. As discussed in Sect. 2.5.6, similar to plastic potential, a creep
potential Φc is introduced in order to describe the creep behavior.

Usually, a stationary creep model is sufficient to describe the creep phenomena
in geological media such as soil and rock. The application of Norton’s model
(2.125) associated with an explicit Euler scheme for time discretization of the
differential equation (2.123) results in the following incremental form of the
calculation of the creep strain tensor:

Δεc = α

(
3

2

)n+1
2

(√
3

2
σd ··σd

)n−1

Δt σd (9.19)

with the time step size Δt.
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Viscoplastic creep is mainly caused by diffusion and dislocations at the mi-
croscale, and results in hardening as well as recovery aspects. Hou and Lux
propose an evolutional equation for the (viscoplastic) creep strain rate consider-
ing stationary as well as transient creep, damage impact, hardening and recovery
(cf. [139–141]). Neglecting damage effects, this approach is known as Lubby2
model.

ε̇c =
3

2

[
1

ηk

(
1 − εtr

max εtr

)
+

1

ηm

]
σd (9.20)

Here εtr denotes the equivalent transient creep strain

εtr =

√
2

3
εtr ·· εtr (9.21)

with εtr = εc−εst (ε
st—stationary creep fraction). In addition to the equivalent

transient creep strain the generalized representation of the von Mises equivalent
deviatoric stress sv is defined.

sv =

√
3

2
σd ··σd (9.22)

Furthermore, the following material functions are suggested, considering only
hardening, and neglecting recovery effects:

max εtr =
sv
Gk

(9.23)

Gk = Ḡ∗
k exp (k1 sv) (Kelvin shear modulus) (9.24)

ηk = η̄∗k exp (k2 sv) (Kelvin viscosity modulus) (9.25)

ηm = η̄∗m exp (msv) exp(lT ) (Maxwell viscosity modulus) (9.26)

As T denotes the absolute temperature, the following material parameters are
necessary to model various constitutive effects:

• Ḡ∗
k , k1 hardening,

• η̄∗k , k2 transient creep, and

• η̄∗m , m , l stationary creep.

9.3.1 Creep of a Thick-Walled Cylinder

Definition

In this example, creep behavior of a thick-walled cylinder is discussed, which is
subjected to a constant inner normal pressure.
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Figure 9.30: Finite element grid of the thick-walled cylinder

Table 9.10: Material parameters of Norton’s creep model

Symbol Parameter Value Unit

E Young’s modulus 137.8 GPa
ν Poisson’s ratio 0.48 –
α Norton model factor 6.415× 10−10 –
n Norton Model exponent 4 –

Solution

The inner and the outer radius of the cylinder are 4mm and 6.4mm respectively,
at a height of 1mm. Quadrilateral elements are used for the spatial discretiza-
tion of the axisymmetric finite element model (cf. Fig. 9.30). The boundary
conditions are as follows: normal pressure p = 2.515MPa at the inner surface
and zero normal stress at the outer surface. Furthermore, displacements in the
axial direction are suppressed at the top and bottom surfaces.

A homogeneous initial stress distribution is assumed in the domain, applying the
following values for the coefficients of the stress tensor in cylindrical coordinates:
σ0
rr = σ0

θθ = σ0
zz = −50Pa. The parameters of Norton’s creep model are given

in Table 9.10.

The numerical results can be compared with Balley’s analytical solution for the
rate of radial displacements

u̇r = α
3
n+1
2

2nn
r2a r

2
b p

n

(r
2/n
b − r

2/n
a )r

and for the equilibrated state of the first stress invariant

σv =
2
√
3

2n

p (rb/r)
2
n

(rb/ra)2/n − 1

Results

Figures 9.31 and 9.32 show the distribution of the first stress invariant σv and
of radial displacements along the cross section of the sample wall compared to
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the pure elastic solution. This demonstrates that σv decreases at about 26% at
the inner surface of the thick-walled cylinder until the asymptotic creep state is
reached. In contrast, the radial displacements increase at about 200%.
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Figure 9.31: Profiles of the first stress invariant during creep at different times,
t = 5, 25, 50 sec compared to the elastic solution
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9.3.2 Thermally Driven Creep in Rock Salt

Definition

Several models exist for the evaluation of the effect of stationary creep in rock
salt. One of those models is the so-called BGRa-model (9.27), which is valid
for an external load between 5Mpa and 25Mpa within a temperature range of
22-200◦C ([142]).

ε̇c = Ae−
Q
RT

( σ
σ∗
)n

(9.27)

In a cylindrical sample of rock salt, stress relaxation is caused by a temperature
decrease of 30K. The aim of the example is to calculate the resulting strain
variation with time within the solid body using the stationary creep model
BGRa (9.27). The results of the simulation defining an axisymmetric model are
compared to a three-dimensional solution.

Solution

For the numerical simulation a cylindrical core sample as shown in Fig. 9.33 is
selected.

Figure 9.34 shows the axisymmetric finite element model (mesh, boundary con-
ditions etc.) arranged in the x-z-plane. The dimensions of this model are: radius
(x-direction) 0.05m and height 0.2m. A relatively coarse mesh consisting of 228
triangular elements and 139 nodes is used.

Vertical deformation at the top and the bottom surfaces are suppressed. The
initial temperature in the whole area is 330K. At the top and bottom of the
model, thermal boundary conditions are prescribed defining a temperature of
300K. Based on these conditions, the stress relaxation during the cooling down
is simulated.

Figure 9.33: Core sample model
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Figure 9.34: Details of the axisymmetric finite element model

Table 9.11: Material parameters of the creep model

Symbol Parameter Value Unit

A Factor of the creep model 0.18 d−1

Q Activation energy 54 kJ·mol−1

R Gas constant 8.31447 J·K−1·mol−1

n Material constant 5 –
σ∗ Reference effective stress 1 MPa

Table 9.12: Material parameters and heat process conditions of the thermo-
mechanical creep model

Symbol Parameter Value Unit

E Young’s modulus 25 GPa
ν Poisson’s ratio 0.27 –
α Thermal expansion coefficient 4.0× 10−5 K−1

c Thermal capacity 1 J·kg−1·K−1

λ Thermal conductivity 100 W·m−1·K−1

T0 Initial temperature 330 K
T Temperature after cooling down 300 K

The material parameters referred to the creep model (9.27) are presented in
Table 9.11.

In Table 9.12, material and process parameters of the thermo-elastic part of the
constitutive model are given.

The numerical simulation of the stress relaxation process over a time of 360 days
is performed within 360 time steps of constant time step length.
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In order to evaluate the numerical results of the relaxation problem, the follow-
ing analytical solution of (9.27) for the problem under consideration has been
proposed (Eickemeier 2007, personal communication) in respect of the stress
increment for the current time step:

Δσi+1 =
(ε̇c

0 −A(σ/σ∗)n)EqΔt
1− Eq/σ∗A∗Δt ξ n (σ/σ∗)n−1

(9.28)

with
A∗ = Ae−Q/RT (9.29)

Here, the initial creep strain rate ε̇c
0 is assumed to be zero, Eq is the weighted

Young’s modulus of the steel plates that are used to apply the external load and
support the rock salt sample (in this case, only rock salt is considered), and the
paramter ξ is defined as ξ = 0.5.

Results

For the analytical solution of (9.28) the axial stress of the previous time step
is used. Time step increment is Δt = 1d. In the three-dimensional case, the
results are shown for node 705, which is located at point (x, y, z = 0.05, 0, 0.12).
This node is identical to node 76 of the axisymmetric model (cf. Fig. 9.35).

The comparison of the increment of axial stresses Δσi+1 analytically obtained
using (9.28) shows identical results to the numerical values at node 705 of the
three-dimensional model and node 76 of the axisymmetric model. Both stress
increments Δσi+1 obtained by OpenGeoSys and the scientific special purpose
finite element code ANSALT (cf. [143]) are equal to 3.05 × 10−3MPa. The
results of axisymmetric, as well as three-dimensional numerical simulations, are
shown in Fig. 9.35 and show an excellent agreement.

Figure 9.35: Comparison of numerical results (OpenGeoSys vs. ANSALT) for
axial stresses
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9.3.3 Stationary Creep in Rock Salt

Definition

With respect to the benchmark discussed in Sect. 9.3.2, the creep process is now
assumed to be caused by a constant external load at the bottom of the solid
and a constant high temperature at the same time. The aim of this example is
to calculate the resulting strain variation with time using the stationary creep
model BGRa (9.27).

Solution

For the simulation with OpenGeoSys almost the same finite element models
(i. e., axisymmetric and three-dimensional case) as for the previous benchmark
in Sect. 9.3.2 are selected. The only difference is in the height of the model,
which is now 0.25m. The initial temperature in the whole domain is 373.15K.
A constant load of 5MPa is applied at the bottom surface of the model. The
numerical simulation of the creep process over a time of 100 days is performed
within 100 time steps of a constant time step length.

In order to compare numerical solutions with an analytical one, (9.27) is trans-
formed into the following expression:

A =
Δεeff

e−Q/RTσeff
(9.30)

with

σeff =
1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

Δεeff =
εeff(t+Δt)− εeff(t)

Δt
(9.31)

εeff =

√
2

3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2

For the considered calculation steps, the stresses of the corresponding time
period are assumed to be constant. Equation (9.30) is solved for node 25 (see
Fig. 9.36) of the axisymmetric finite element model.

Results

The effective stress value σeff at node 25 for the given time period is 5.03MPa,
which was calculated using (9.32). The strain at the end of the first time step
is εeff(t1) = 1.72 × 10−3, and at the end of the second time step: εeff(t2) =
1.73× 10−3, which again, is calculated using (9.32). Considering (9.30) the an-
alytically obtained value of the parameter A is equal to 0.19, which corresponds
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Figure 9.36: Comparison of numerical strain results (x- and z-directions) for
the axisymmetric and the three-dimensional models

Figure 9.37: Comparison of numerical strain results (y-direction) for the ax-
isymmetric and the three-dimensional models

approximately to the input value of A of 0.18 defined in the previous example.
The results of the comparison between the axisymmetric model and the three-
dimensional model are shown in Figs. 9.36 and 9.37. These results are identical.

9.3.4 Transient Creep in Rock Salt

Definition

Triaxial long-term compression under axisymmetric conditions is carried out
to verify the Lubby2 creep model (9.20) and to study transient as well as
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stationary creep behavior, assuming isothermal conditions and neglecting dam-
age processes.

Solution

As described in Sect. 9.1.6, for the calculation, the cross-section of a cylindrical
sample with a radius of 30mm and a height of 120mm is studied. The loading
in principal axes includes a radial pressure as well as an axial pressure, and
is realized in two steps. It is resulting in a homogeneous stress-strain state.
Details of the model (geometry, mesh, boundary conditions) according to K.-H.
Lux and F. Werunsky (unpublished report, 2008) are presented in Fig. 9.38.

Initial conditions do not have to be given for the problem under consideration.
As the bottom edge is fixed in the vertical direction, the left-hand edge is fixed
in the horizontal direction for symmetry reasons (axis of rotation). On the
right-hand edge, initially a radial casing pressure of 5MPa is applied within
60 seconds with a constant stress rate. While keeping constant this radial pres-
sure, a subsequent stress-driven axial compressive loading is applied within the

30 mm

120 mmSVV

p r
=

5
M

P
a

ua = −6 mm

Figure 9.38: Triaxial compression of a cylindrical sample. Axisymmetric model.
Left: Geometry. Right: Finite element grid and boundary condi-
tions
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Figure 9.39: Triaxial compression of a cylindrical sample. Loading history for
long-term creep experiments. Radial casing pressure (stress rate
ṗr = 0.083MPa·s−1) with subsequent axial pressure (stress rate
ṗa = 0.0125MPa·s−1). Each pressure loading with subsequent
constant values over 20 days

following 1,440 seconds with a constant stress rate. The maximum axial pres-
sure is 18MPa. In the following, both the radial and the axial pressures are
kept constant for 20 days (for the loading history cf. Fig. 9.39).

The modified Lubby1 model was considered to generate the fourth-order elastic
material matrix for the creep model under consideration. Within this context,
the material parameters referring to the modified Lubby1 relation (9.4) are
given in Table 9.13. The material parameters for the creep fraction (Lubby2
(9.20)) are given in Table 9.14. Within this context, the initial Young’s modulus,
the Poisson’s ratio and all the creep parameters are close to values known for
rock salt according to K.-H. Lux, M. Rutenberg and F. Werunsky (unpublished
report, 2008).

Results

The representation of the axial stress vs. the axial strain in Fig. 9.40 shows the
complex creep behavior of the sample under consideration.
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Table 9.13: Material parameters for the elastic fraction of the material model
(cf. Sect. 9.1.6)

Symbol Parameter Value Unit

E0 Initial Young’s modulus 21.4 GPa
ν Poisson’s ratio 0.335 –
a Factor in (9.4) 27500 –
n Exponent in (9.4) 1.0 –

Table 9.14: Material parameters for the creep fraction of the material model

Symbol Parameter Value Unit

η̄∗m Maxwell viscosity in (9.26) 1.09× 107 MPa·d
m Factor in (9.26) −0.219 MPa−1

l Factor in (9.26) 0.0 K−1

η̄∗k Kelvin viscosity in (9.25) 1.45× 105 MPa·d
k1 Factor in (9.24) −0.146 MPa−1

k2 Factor in (9.25) −0.121 MPa−1

Ḡ∗
k Kelvin shear modulus in (9.24) 7.0× 104 MPa

Figure 9.40: Triaxial compression of a cylindrical sample. Numerical simulation
of the transient and stationary creep behavior using the Lubby2
model (9.20)
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Chapter 10

Mass Transport

by Sebastian Bauer, Christof Beyer, Chris McDermott, Georg Kosakowski,
Stefanie Krug, Chan-Hee Park, Geraldine Pichot, Haibing Shao, Yuanyuan Sun,
and Joshua Taron

The mass transport in a homogeneous, saturated aquifer can be influenced by
convection, diffusion, decay and biodegradation, sorption and chemical reac-
tions. For a steady state one-dimensional flow through a homogeneous isotropic
medium with constant material parameters, the following differential equation
(10.1) is applied.

∂C

∂t
+
ρb
R

· ∂S
∂t

+
q

R
· ∂C
∂x

= Dxx · ∂
2C

∂x2
− λ · C (10.1)

with

C – dissolved concentration (kg·m−3),

S – sorbed concentration(kg·kg−1),

t – time (s),

ρb – bulk density (kg·m−3),

R – retardation factor (-),

q – flow rate (m·s−1),

x – distance (m),

Dxx – dispersion coefficient in x-direction (m2·s−1),

λ – decay rate (s−1).

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 10, © Springer-Verlag Berlin Heidelberg 2012
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This equation is used to calculate the concentration distribution under consid-
eration of decay and sorption with the linear Henry-isotherm. The retardation
coefficient R for the Henry isotherm is related to the Henry sorption coefficient
KD in the following way.

R = 1 +
ρb
Φ
KD = 1 +

1−Θ

Φ
ρsKD (10.2)

with

Φ – porosity (-),

ρs – density (kg·m−3),

with the initial and boundary conditions

C(x, t = 0) = CI ∀x
with CI—concentration at time I .

C(x = 0, t) = C0 ∀t, ∂C

∂x
(x→ ∞, t) = CI ∀t > 0

with C0—initial concentration.

The following analytical solution is significant:

C = C1 + (C0 − C1) · 1
2

[
exp

(
v · x(1 − γ)

2 ·Dxx

)
· erfc

(
x− v · γ · t/R
2 ·√Dxx · t/R

)

+ exp

(
v · x(1 + γ)

2 ·Dxx

)
· erfc

(
x+ v · γ · t/R
2 ·√Dxx · t/R

)]
(10.3)

with v—velocity

γ =
√
1 + 4 · λ ·R ·Dxx/v2 . (10.4)

Equation (10.3) is the basis for the verification of the numerical simulation
results for the 1-dimensional mass transport. All described equations and all
analytical solutions of equation (10.3) are taken from [144].

10.1 Diffusion

In both gaseous and aqueous systems, diffusion generates an orderly system;
removing gradients of energy or mass concentration. Particles move from higher
to lower concentrations via temperature dependent Brownian motion. In an
aquifer, diffusive transport appears when convective transport is not particularly
relevant (small velocities).
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The extent of diffusion is also dependent on the diffusing substance and the
medium. In addition, diffusion in soils is influenced by other factors, e.g. tor-
tuosity. The finer a soil, the stronger the interacting forces between the soil
matrix and the diffusing molecules. The diffusion coefficient which has to be
given in OGS is the so-called apparent diffusion coefficient.

Da =
De

Φ
(10.5)

with De—effective diffusion coefficient.

10.1.1 Axisymmetric Model

Definition

This diffusion model is built to reproduce a field study in clay. This in situ
test consists of a borehole where a solution is circulated that contains tracer
substances such as HTO. These tracers diffuse into the adjacent clay. The aim
of the investigation is to simulate the HTO distribution after 300 days, the
final test time, and to compare the simulation results of OGS to those that are
calculated by HYDRUS 1 D (Simunek et al.) and PHAST (Parkhurst et al.).

To build a proper model of the tracer test, a one-dimensional axisymmetric
model with 3.8 cm borehole radius and 21.2 cm horizontal distance in the clay
soil is created. As initial conditions a constant pressure of 0 was specified in
the whole model and the concentration relation c/c0 of 1 within the distance of
the borehole radius and of 0 within the clay domain. The pressure boundary
condition corresponds to the initial condition. The calculation model includes
310 elements and 311 nodes. Table 10.1 shows the used parameters for the clay
and the apparent diffusion constant Da of HTO. The calculation is performed
for the test duration of 300 days with fitted time step lengths from 0.001 d to
1 d (Bahr, 2007). The porosity in the modelled borehole is assumed to be 1
in order to evoke the simulation of a tracer reservoir that supplies the tracer
solution into the clay.

The aim of the presented calculation example is to evaluate the OGS simulation
results by comparing them with numerical results of two other simulation pro-
grammes. The comparison is made using Hydrus 1 D, which is a one-dimensional

Table 10.1: Model parameters

Symbol Parameter Value Unit

ρ Density 2.5 t · m−3

Φ Porosity 0.15 –
K Permeability 1.0·10−11 m2

Da Diffusion coefficient 3.6·10−10 m2·s−1
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transport model especially for the solute transport in soils. The second code,
PHAST, is linked to the chemical software PHREEQC. The simulation with
both programmes was made under consideration of the same boundary condi-
tions and parameters (Bahr, 2007).

Results

In Fig. 10.1 you can find the concentration distributions over the width of 0.25 m
after a simulation time of 300 days, that were calculated by means of OGS,
PHAST and Hydrus 1D (Bahr, 2007). The numerical results agree well with
each other. Thus, the comparison shows that the diffusion process can be well
reproduced by the use of an axisymmetric OGS model.

10.1.2 Anisotropy

Definition

The aim of this example is to simulate the transport of a tracer by molecu-
lar diffusion in an anisotropic porous medium. The side length of the square
numerical model is 1 m. At the left bottom corner of the model a constant
concentration is diffusing into the calculation area. Diffusion is the only process
for tracer transport; there are no pressure differences in the whole area. Be-
cause of the anisotropy of the soil material the tracer has to diffuse much faster
in the x-direction than in the vertical direction. This has to be evaluated by
comparing the concentration distributions in both directions.

As initial conditions the pressure and tracer concentrations were set to 0 in
the whole area. At the left bottom corner of the model a concentration rela-
tion c/c0 of 1 is specified along two polylines 0.3 m in length. The boundary
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Figure 10.1: Concentration distributions after 300 days
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conditions correspond to the initial conditions. The calculation model includes
736 triangular elements and 409 nodes. Table 10.2 shows the parameters used
for the simulation. As the porous medium is assumed to be anisotropic, which
influences diffusion, the value for tortuosity is set equal to 1 in the x-direction
and 0.1 in the y-direction.

The calculation is made for 30 time steps with a length of 1·107 seconds. The
calculation model is sketched in Fig. 10.2.

As the process of diffusion is dependent on the actual concentration in the
porous medium and on the point in time, an analytical solution for the present
calculation model is not possible. Therefore, the results of the OGS simula-
tion are evaluated in a solely qualitative way by comparing the concentration
distributions in horizontal and vertical directions.

Results

In Fig. 10.3 you can find the concentration distributions over the model side
length of 1 m in the x- and y-directions, respectively, after a simulation time
of 1·108 seconds. Assuming a small tortuosity of 0.1, the component is not yet

Table 10.2: Model parameters

Symbol Parameter Value Unit

Φ Porosity 0.4 –
K Permeability 1.0·10−15 m2

ρ Density water 1000 kg· m−3

η Viscosity water 0.001 Pa· s
αT Dispersion length 10.0 m
Da Diffusion coefficient 6.0·10−10 m2· s−1

Figure 10.2: Benchmark definition
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Figure 10.3: Concentration distributions in x- and y-direction

transported over the whole transport length of 1 m in the vertical direction, while
in the horizontal direction the concentration relation equals approximately 0.3
at the opposite border of the model. Diffusion velocity depends on tortuosity.
For anisotropic materials it can vary in different directions.

10.2 Decay

Radioactive decay is the change in the composition of a core by emitting particles
and/or electro-magnetic radiation. Different kinds of radioactive decay are i.e.
decay as a result of emission of negatrons or positrons and decay under emission
of γ-rays.

α-decay 232
90Th → 228

88Ra +
4
2He

β-decay 228
88Ra → 228

89Ac +
0

−1e

γ-decay 236
92U

� → 236
92U+ γ

The above given examples show that the radioactive decay is an irreversible
process. The following differential equation describes the decay as a first order
reaction (without chain development):

∂C

∂t
= −λ · C (10.6)

with λ—decay rate (s−1).

The integration of this equation causes an exponential decay term in the follow-
ing form.

C(t) = C0 · e−λ·t (10.7)
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with C0—initial concentration (kg·m−3).

The decay values are commonly expressed as the so-called half life (t1/2). This is
the point of time when half of the substance is degraded. The relation between
the half-life T and the decay rate results from:

e−λ·t =
1

2
⇒ λ =

ln(2)

T
∼= 0.693

T
(10.8)

10.2.1 Definition

The aim of this example is to simulate mass transport with the influence of
decay, but without any sorption. At the left side of the considered aquifer there
is a volume source of 0.1 m3/d, at the right side there is a constant water
pressure of 20 kPa. The tracer substance in the source volume is distributed by
a stationary flow in the homogeneous aquifer. The mass distribution after 100
days has to be calculated. Figure 10.4 shows a sketch of the calculation area.

The following simplifications are assumed: (1) no sorption, exclusively decay
of components (2) homogeneous aquifer, saturated, stationary flow. For the
1-dimensional calculation, the calculation area is simplified as a line with the
length of 100 m with 100 elements and 101 nodes. As boundary conditions
the relative concentration amounts 1 and the source volume of the fluid phase
with 0.1 m3/d is given at the left border of the calculation area and a constant
pressure of 20 kPa at the right boundary. The utilized parameters of the soil
are listed in Table 10.3. The calculation is divided into 100 time steps with a
constant time step length of 1 day. That means, the flow and transport processes
in the aquifer within 100 days are simulated.

The concentration distribution at a special point in time and over a given dis-
tance is calculated by (10.3). Hereby the retardation coefficient is set equal to 1.
The analytical solutions are depicted in Fig. 10.5 as single symbols.

Figure 10.4: Calculation area: homogeneous aquifer
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Table 10.3: Model parameters

Symbol Parameter Value Unit

Φ Porosity 0.2 –
K Permeability 1.0·10−12 m2

ρ Density water 1000 kg· m−3

η Viscosity water 0.001 Pa· s
αL Dispersion length 5.0 m
λ Decay in solved phase 2.0·10−7 s−2

Figure 10.5: Concentration distribution after 100 days (decay)

10.2.2 Results

In Fig. 10.5 you can find the concentration distribution over the whole length of
the one-dimensional model at the final simulation time of 100 days. It is clear
that the numerical results agree well the analytical solutions.

10.3 Sorption

Exchange processes, like sorption, between the solid and the liquid phase in the
multiphase system of an aquifer can be caused by physical (Van-der-Waals-forces)
or chemical bonds. Sorption processes can be reversible (adsorption-desorption)
if the chemical environment changes. When transport in a multiphase system is
simulated, the mass exchange between the liquid and the solid phase has to be
included. The equations that describe the sorption processes are called sorption
isotherms. Sorption isotherms describe the relation between the substance that
is adsorbed on the solid matrix and the one which is dissolved in the fluid phase.
Those equations are only valid under isothermal conditions. The isotherms that



www.manaraa.com

10.3 SORPTION 209

are listed below are based on the assumption that the adsorbed substance and
the dissolved one are in a state of equilibrium.

Henry : S = KD · C (10.9)

Freundlich : S = K1 · CK2 (10.10)

Langmuir : S =
K1 · C

1 +K2 · C (10.11)

with

KD, K1, K2 —distribution coefficients,

S —concentration of the adsorbed species (kg· kg−1),

C —concentration of the dissolved species (kg· m−3).

The distribution coefficients are dependent on the substance and specific soil
properties like pH. The linear Henry-isotherm is often used when there are low
concentrations of chemical species. Non-linear sorption processes are reproduced
by the Freundlich or the Langmuir isotherm. Then the retardation is depen-
dent on the solute concentration. In addition, the use of the Langmuir isotherm
assumes a constant amount of sorption space at the solid surface. A maximum
concentration for the adsorbed substance on the solid matrix is exclusively con-
sidered by the Langmuir isotherm [144]. This maximum concentration cmax is
included in the distribution coefficient K1 (K1 = cmax ·K2). The distribution
coefficientK2 of the Langmuir isotherm stands for the affinity between solid and
sorbed solute. The distribution coefficients do not have comparable values: each
sorption isotherm has to be considered separately with its specific constants.

10.3.1 Linear Sorption (Henry Isotherm)

The aim of this example is to simulate the solute transport in an aquifer by
convection with the influence of retardation as a result of sorption. The solute
transport is influenced by linear sorption processes. That means, the Henry-
isotherm is relevant to calculate the solute concentration. The calculation area
and boundary conditions are the same as described for the precedent example.

The following simplifications are assumed: (1) exclusively linear sorption (Henry
isotherm), no decay of components (2) homogeneous aquifer, saturated, station-
ary flow (Fig. 10.4). The soil parameters are the same as listed in Table 10.3,
but decay is not considered during these simulation runs. For the different sim-
ulation runs, the Henry-sorption coefficients are varied as listed in Table 10.4 in
order to evaluate the influence of sorption on the mass transport. The retarda-
tion coefficients R are calculated by solving (10.2).
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Table 10.4: Variation of KD-values and retardation coefficients as input
variables

KD value [m3· kg−1] Retardation coefficient [-]

0 1
6.8 ·10−6 1.05
6.8 ·10−5 1.54
6.8 ·10−4 6.44

Figure 10.6: Concentration distribution after 100 days (Henry sorption)

Results

The concentration distribution at a special point in time and over a given dis-
tance is calculated by (10.3). Hereby the decay term γ is set equal to 1. The
analytical solutions are depicted in Fig. 10.6 as single symbols. In Fig. 10.6
you can find the concentration distribution over the whole length of the one-
dimensional model at the final simulation time of 100 days. It is clear that the
numerical results agree well the analytical solutions.

10.3.2 Non-linear Sorption (Freundlich Isotherm)

Definition

The non-linear Freundlich isotherm is often used to describe real sorption pro-
cesses. Therefore, in this example the transport process, by including the Fre-
undlich isotherm, is calculated in the same way as in the precedent example
(same model and boundary conditions). As there exists no opportunity to cal-
culate analytically the solute transport with non-linear sorption, the results of
the simulation have to be compared with solutions of the transport equation
with linear sorption in order to evaluate the simulation results.
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The following simplifications are assumed: (1) non-linear sorption (Freundlich
isotherm), no decay of components (2) homogeneous aquifer, saturated, station-
ary flow (Fig. 10.4).

The soil parameters are the same as listed in Table 10.3 (except decay). For the
different simulation runs the Freundlich-sorption coefficients (K1) are varied in
the same way as the KD-values that are listed in Table 10.1. The exponent K2

was constant with a value of 1.

The dependence of sorbed molecules on the amount of molecules in dilution is
given by equation (10.11). The concentration distribution at a special point in
time and over a given distance cannot be calculated analytically by (10.3) when
a non-linear sorption process is assumed. A possible way to test the correctness
of the simulation results for transport with Freundlich sorption, is to choose
values of distribution coefficients that create a concentration distribution which
is approximately linear and must therefore be almost equal to the results of
transport by use of the Henry isotherm.

Results

As the values for the Freundlich coefficients were chosen in a way that con-
centration distribution between sorbed and solute concentrations is almost lin-
ear, the results of the simulation runs have to be equal to the results that are
obtained by using the linear Henry isotherm. In Fig. 10.7 the concentration
distribution of the solute over the model length of 100 m is shown. As the
concentrations of the transport simulation by using the Freundlich isotherm
match those of the simulation runs with linear sorption, these results for non-
linear sorption are reasonable. Additionally, the values for the constant K2 were
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Figure 10.7: Concentration distribution after 100 days (Freundlich compared to
Henry sorption)
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changed to 0.8 in order to prove a difference between linear and non-linear sorp-
tion. The results of the comparison are shown in Fig. 10.8. These numerical
results show the effect of the application of a non-linear sorption isotherm: the
higher the influence of sorption (large value of sorption coefficient KD resp. K1)
the higher the difference of solute concentration values between non-linear and
linear sorption. However, the results for both isotherms were not evaluated
quantitatively.

10.3.3 Non-linear Sorption (Langmuir Isotherm)

Problem Definition

The non-linear Langmuir isotherm is used to describe sorption processes that are
restricted by a maximum concentration of sorbed molecules. In this example
the transport process, by including the Langmuir isotherm, is calculated in
the same way as the precedent examples for mass transport. As there exists
no opportunity to calculate analytically the solute transport with non-linear
sorption, the results of the simulation have to be compared with solutions of
the transport equation with linear sorption in order to evaluate the simulation
results.

The following simplifications are assumed: (1) non-linear sorption (Langmuir
isotherm), no decay of components (2) homogeneous aquifer, saturated, station-
ary flow (Fig. 10.4). The soil parameters are the same as listed in Table 10.3
(except decay). In order to create a Langmuir equation which has almost the
same linear characteristic as the Henry equation, the Langmuir sorption coef-
ficients, K1, were varied in the same way as the Henry coefficients (KD values

distance (m)
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Freundlich, K1=6.8e-4, K2=0.8
Freundlich, K1=6.8e-5, K2=0.8
Freundlich, K1=6.8e-6, K2=0.8
Henry, KD=6.8e-4 
Henry, KD=6.8e-5
Henry, KD=6.8e-6

Figure 10.8: Different concentration distributions after 100 days (Freundlich
compared to Henry sorption)
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in Table 10.4) for the different simulation runs. The K2 coefficients stand for
the affinity between solid and sorbed solute. Thus, the K2 value cannot be set
equal to 0, because this would cause a transport without any sorption. When
K2 equals 1, there is no effect on the binding affinity. Therefore, the coeffi-
cient K2 was set constant with a value of 1 in order to approximate the linear
characteristic of the Henry equation (10.10).

The dependence of sorbed molecules on the amount of molecules in dilution
is given by (10.11). The concentration distribution at a special point in time
and over a given distance cannot be calculated analytically by (10.3) when a
non-linear sorption process is assumed. Therefore, the simulation results are
compared with the results for the mass transport by using the linear Henry
isotherm. The non-linear Langmuir isotherm was forced to be almost linear
in the way described above. Now the results of the transport, by using the
Langmuir isotherm, can be compared with the results that were obtained by
the transport simulation with the linear Henry isotherm.

Results

In Fig. 10.9 the concentration distributions over the whole model length by using
the linear Henry isotherm and the non-linear Langmuir isotherm are depicted.
Obviously, the results for each specified distribution constant are almost equal.
This result is correct, because it was provoked by the choice of the sorption
coefficients.

In order to show that the results when using the Langmuir isotherm are actually
different to those when using the Henry isotherm, the K2 values were changed

Figure 10.9: Concentration distribution after 100 days (Langmuir compared to
Henry sorption)
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Figure 10.10: Different concentration distributions after 100 days (Langmuir
compared to Henry sorption)

to a value of 0.8, so that the Langmuir isotherm received a real non-linear gradi-
ent. As the results show (Fig. 10.10), the differences between the concentration
distributions are evident.

10.4 Sorption and Decay

10.4.1 Single Component

Definition

The aim of this example is to simulate solute transport in an aquifer by con-
vection with the influence of retardation as a result of sorption. Additionally,
the transported mass will be degraded. The calculation area and boundary
conditions are the same as described in Sect. 10.2.

The following simplifications are assumed: (1) linear sorption, decay of compo-
nents (2) homogeneous aquifer, saturated, stationary flow (Fig. 10.4). The soil
parameters are the same as listed in Table 10.3. The decay rate λ is 2·10−7 s−1.
For the different simulation runs, the Henry sorption coefficients are varied as
listed in Table 10.4, in order to again evaluate the influence of sorption on mass
transport. The concentration distribution at a special point in time and over a
given distance is calculated by (10.3). The analytical solutions are depicted in
Fig. 10.11 as single symbols.
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Figure 10.11: Concentration distributions after 100 days (sorption and decay)

Results

The influence of radioactive decay on the transport process can be recognized at
the typical declining exponential curves in Fig. 10.11. According to the different
sorption coefficients, the transport is retarded. Obviously, the numerical results
(lines) agree well with the analytical solutions. Therefore, it can be summa-
rized that the transport, under the combined consideration of both decay and
sorption, can be reproduced by the OGS simulation.

10.4.2 Multi Components

Definition

The aim of this example is to simulate the transport of several components with
different sorption behaviour and decay. The calculation area and boundary
conditions are the same as described for the precedent example. The mass
distribution after 100 days has to be calculated.

The following simplifications are assumed (Fig. 10.4):

Component 1: no sorption, no decay
Component 2: decay
Component 3: linear sorption
Component 4: linear sorption, decay
Aquifer: homogeneous, saturated, stationary flow

The soil parameters are the same as listed in Table 10.3. The decay rate λ
for components 2 and 4 is 2·10−7 s−1, the Henry sorption coefficient KD for
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Figure 10.12: Concentration distributions of the four components after 100 days

component 3 is 6.4·10−4 m3· kg−1 (R = 6.44). The concentration distribution
at a special point in time and over a given distance is calculated by equation
(2.44). The analytical solutions are depicted in Fig. 10.12 as single symbols.

Results

In Fig. 10.12 you can find the concentration distribution of the 4 different compo-
nents over the whole length of the one-dimensional model at the final simulation
time of 100 days. As the comparison of each single component with the analyt-
ical results of the “one-component-transport” shows, the numerical results for
the multi component transport are reasonable.

10.5 Matrix Diffusion

10.5.1 Definition

This benchmark is introduced to verify the matrix diffusion function. It sim-
ulates advective -dispersive transport of a solute in a one-dimensional fracture
with constant aperture, with and without the effect of matrix-diffusion. The ge-
ometry and the material parameters are chosen to fit the parameters extracted
from experiments conducted during the Colloid Radionuclide Retardation Ex-
periment at Nagra’s Grimsel test site [145]. The results from OGS are compared
with that from PICNIC, and they fit well.

The geometry and material parameters in PICNIC and OGS are summarized
in Table 10.5 and the conceptual model is shown in Fig. 10.13. PICNIC solves
the one-dimensional problem, whereas in OGS a two-dimensional discretization
was chosen. A rectangular domain of 5.2m × 0.5m was discretized with 1,155



www.manaraa.com

10.5 MATRIX DIFFUSION 217

Table 10.5: Geometry and material properties for the simulations

Symbol Parameter Value Unit

L Distance between boundary
and observation points 2.5 m

αT Transverse dispersion (OGS only) − m
ρ Bulk matrix density 2, 670 kg· m−3

2b Fracture aperture 0.55× 10−3 m
v Fluid velocity 7.05× 10−4 m/s
αL Longitudinal dispersion (OGS only) 0.1 m
Pe Peclet number (PICNIC only) 25 −
εp Matrix porosity 0.3 −
Dp Diffusion constant in rock matrix 7.4× 10−11 m2·s−1

Figure 10.13: Conceptual setup of the 1D problem

nodes and 2,080 triangular elements. One of the shorter domain edges was
chosen as an inflow boundary and fluid was injected at the boundary-nodes
in such a way that the resulting fluid velocity exactly matches the value from
Table 10.5. The concentration is fixed at the inflow boundary. In 2.5m distance
the breakthrough curve is recorded. The outflow boundary is assumed to be far
away and should not influence the observed breakthrough curve. Picnic V2.2
and OGS (Rev. 1535).

As defining exactly the same transport boundary conditions in OGS and PIC-
NIC is not possible, the following procedure was used to get the inflow boundary
condition as similar as possible:

1. The system was calculated for injecting a pulse of solute with a constant
flux for a time length of 50s with PICNIC. The concentration vs. time
was recorded for the inflow-leg.

2. The concentrations vs. time extracted from PICNIC’s inflow-leg was ap-
plied (fixed) to the inflow boundary of the OGS system.

These procedures work as long as advective fluxes are much higher than the
dispersive-diffusive fluxes over the boundary. The outflow boundary condition
is set to infinity, i.e. a semi-infinite problem is calculated. In OGS the domain
is set to 5m, double the distance between the inflow boundary and observation
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Figure 10.14: Breakthrough of the ADE and the ADE+MD solutions calculated
with PICNIC and OGS

point. This prevents the outflow boundary condition from influencing the tracer
breakthrough at the observation point.

10.5.2 Results

For the investigated two cases, advection and dispersion (ADE) only and ADE
plus matrix diffusion(MD), the PICNIC and OGS solutions are, in general, very
similar (see Fig. 10.14).

10.6 Particle Tracking

The classical advection-dispersion equation of a conservative solute in porous
media can be written as [146]

∂C

∂t
= −∇ · (vC) +∇ · (D∇C) (10.12)

where C is the concentration (kg·m−3), v is the pore velocity vector (kg·m−1)
and D is the hydrodynamic dispersion tensor (m2·s−1), t is time (s) and ∇is
the differential operator.

The random walk particle tracking (RWPT) method is issued from stochastic
physics. The stochastic differential equation is [147]

x(ti) = x(ti−1) + v(x(ti−1))Δt+ Z
√
2D(x(ti−1))Δt (10.13)

where x is the coordinates of the particle location, Δt is the time step, and Z
is a random number whose mean is zero and variance is unity.
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It has been shown that this equation is equivalent to an equation that is slightly
different from the advection-dispersion equation (10.12). To be equivalent to
equation (10.12), the modified velocity [148] is expressed as

v∗
i = vi +

3∑
j=1

∂Dij

∂xj
(10.14)

with dispersion tensor [146]

Dij = αT |v |δij + (αL − αT )
vivj
|v | +Dd

ii (10.15)

where δij is the Kronecker symbol, αL is the longitudinal dispersion length,
αT is the transverse dispersion length, Dd

ij is the tensor of molecular diffusion
coefficient and vi is the component of the mean pore velocity in the ith direction.

The equivalent stochastic differential equation to (10.12) in three-dimensional
problems can be written as [149–151]

xt+Δt = xt +
(
vx(xt, yt, zt, t) +

∂Dxx
∂x +

∂Dxy
∂y + ∂Dxz

∂z

)
Δt

+
√
2DxxΔtZ1 +

√
2DxyΔtZ2 +

√
2DxzΔtZ3

yt+Δt = yt +
(
vy(xt, yt, zt, t) +

∂Dyx
∂x +

∂Dyy
∂y +

∂Dyz
∂z

)
Δt

+
√
2DyxΔtZ1 +

√
2DyyΔtZ2 +

√
2DyzΔtZ3

zt+Δt = zt +
(
vz(xt, yt, zt, t) +

∂Dzx
∂x +

∂Dzy
∂y + ∂Dzz

∂z

)
Δt

+
√
2DzxΔtZ1 +

√
2DzyΔtZ2 +

√
2DzzΔtZ3

(10.16)

where Zi is a random number whose mean is zero and variance is unity.

Together with (10.15), the spatial derivatives of the dispersion coefficients can
be expressed as a function of the derivatives of velocity. Note that to obtain
the derivatives of velocity, velocity has to be continuous mathematically. To
this end, we interpolate velocity at any location in an element from the known
velocity at the element nodes.

Since the proposed RWPT method makes use of the FEM for velocity estima-
tion, the derivative of velocity within each element is computed as in Fig. 10.15
and written as

∂vx
∂x = v(xR)−v(xL)

lx
;

∂vy
∂y = v(yU )−v(yD)

ly
; ∂vz

∂z = v(zN )−v(zS)
lz

∂vx
∂y = ∂vx

∂z =
∂vy
∂z =

∂vy
∂x = ∂vz

∂x = ∂vz
∂y � 0

(10.17)

where xL and xR are intersection points of the element edges with a line parallel
to the global x axis at which velocities are v(xL) and v(xR), yD and yU are
intersection points of the element edges from down to up with a line parallel to
the global y axis at which velocities are v(yD) and v(yU ), zS and zN are the
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Figure 10.15: Spatial derivatives of velocity for a particle in triangular and
quadrilateral elements (V is velocity)

intersection points of the element edges from south to north with a line parallel
to the global z axis at which velocities are v(zS) and v(zN ), and lx, ly, and lz
are the length of each intersection line, respectively.

Thus, the derivatives of the dispersion coefficients are as follows [152]

∂Dxx
∂x = vx

∂vx
∂x

[
αL

(
2
v − v2

x

v3

)
− αT

v2
y+v2

z

v3

]

∂Dxy
∂y = (αL − αT )

[
∂vy
∂y

vx
v − vxv

2
y

v3

∂vy
∂y

]

∂Dxz
∂z = (αL − αT )

[
∂vz
∂z

vx
v − vxv

2
z

v3
∂vz
∂z

]

∂Dyy
∂y = vy

∂vy
∂y

[
αL

(
2
v − v2

y

v3

)
− αT

v2
x+v2

z

v3

]

∂Dyx
∂x = (αL − αT )

[
∂vx
∂x

vy
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2
x

v3
∂vx
∂x

]

∂Dyz
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∂z

]

∂Dzz
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2
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(10.18)

Because velocity is not derivable at the interface of two adjacent elements in a
nonuniform flow, computing dispersion coefficient derivatives by using a finite
element approach would yield erroneous values [152]. To prevent these errors,
a particle is coded to have information of an element index and the velocity
estimation is continuous even at the elemental boundaries in this method. Thus,
the derivatives of dispersion coefficients will be computed accordingly. This is
an improved approach from the work by Hoteit et al. [152].
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10.6.1 Particle Tracking in Porous Medium:
1D Case Study

Definition

A one-dimensional homogenous aquifer is chosen to simulate a soil column ex-
periment conducted by Harter et al. [153]. In the experiment, a constant flow
rate was established, 2.5 pore volumes NaCl—tap water solution and 2.5 pore
volumes Cryptosporidium parvum solution (1 × 105 oocysts per mL) were in-
jected respectively, the outflow was continuously collected. Figure 10.16 shows
the schematic description of the experiment.

NaCl—tap water solution is used as a tracer, which experiences only advection
and dispersion. The Cryptosporidium parvum can be classified as a biological
colloid. Colloids moving in porous media experience advection, dispersion,
sorption-desorption, and filtration.

Analytical Solution

For the one-dimensional transport including sorption-desorption and filtration
through a homogeneous medium the following differential equation is applied

∂C

∂t
+
ρb
n

∂CS
∂t

= vαL
∂2C

∂x2
− v(

∂C

∂x
+ λC) (10.19)

10 cm

5.10 cm

B.C. p = 937.35Pa

B.C. p = 200Pa

I.C. p = 200Pa

Figure 10.16: Soil column experiment
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where C is dissolved concentration (kg·m−3), CS is sorbed concentration
(kg·kg−1), t is time (s), ρb is bulk density (kg·m−3), n is porosity (-), v is
velocity (m·s−1), αL is longitudinal dispertivity (m), x is distance (m) and λ is
filtration coefficient (m−1).

The instantaneous, linear sorption model assumes that

CS = KdC (10.20)

where Kd is the partitioning coefficient (m3 · kg−1). The retardation coefficient
R is

R = 1 +
ρb
n
Kd (10.21)

The dispersion coefficient in the x-direction Dxx (m2 · s−1) is

Dxx = vαL (10.22)

The analytical solution for a pulse input (inject time from 0 to τ) is:

C = 1
2C0

[
exp

(
vx(1− γ)

2Dxx

)
erfc

(
x− vγt/R

2
√
Dxxt/R

)

+ exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x+ vγt/R

2
√
Dxxt/R

)]
(10.23)

for t ∈ (0, τ ) ,

C = 1
2C0

[
exp

(
vx(1 − γ)

2Dxx

)
erfc

(
x− vγt/R

2
√
Dxxt/R

)

+ exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x+ vγt/R

2
√
Dxxt/R

)

− exp

(
vx(1 − γ)

2Dxx

)
erfc

(
x− vγ(t− τ)/R

2
√
Dxx(t− τ)/R

)

− exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x+ vγ(t− τ)/R

2
√
Dxx(t− τ)/R

)]
(10.24)

for t ∈ (τ,∞) , where

γ =
√
1 + 4vλRDxx/v2 (10.25)

Numerical Solution

The calculation area is simplified to a line with the length of 0.1m. For the
numerical model 100 elements and 101 nodes are included. Head gradient is set
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by giving two constant pressures at both left and right boundaries to establish
a uniform velocity field with the value of 7.1 md−1.

The pore volume (x-axis) is calculated by

PV =
vt

L
(10.26)

where v is the seepage velocity, L is the length of the soil column. Considering
the Courant number, the time step size is set by assigning PV to 0.01. In the
simulation, 100 particles per time steps are loaded near the left boundary for
250 time steps.

The filtration process is described by using the filtration coefficient. The
sorption-desorption process is described by the two-rate model from Johnson
et al. [154]. In the two-rate model, desorption is governed by two different rate
coefficients

N/N0 = Ae−k1t + (1−A)e−k2t (10.27)

where N is the number of particles remaining on the medium at time t, N0 is
the initial number of particles on the medium at the time of initial sorption, A is
a weighting factor and k1 and k2 are the fast and slow sorption rate coefficient,
respectively. Relevant parameters are listed in Table 10.6.

Results

The tracer experiences only advection and dispersion, which means in (10.19),
CS = 0, λ = 0. The results of RWPT simulation for the distribution of concen-
tration over time are compared to those of measured value from the experiment
by Harter, the analytical solution and the OGS simulation with the mass trans-
port method. The comparison results are shown in Fig. 10.17.

Table 10.6: Model parameters for the column experiment

Symbol Parameter Value Unit

k Permeability 1.114476−11 m2

αL Longitudinal dispersivity 0.005 m
n Porosity(tracer) 0.5 −
n Porosity(colloid) 0.42 −
A Weighting factor 0.9 −
k1 Fast sorption rate coefficient 0.1 −
k2 Slow sorption rate coefficient 0.001 −
λ Filtration coefficient 5.2 m−1
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In the colloid transport simulation, the number of particles leaving the right
boundary is counted each time step. The number is then converted to con-
centration in order to obtain the corresponding breakthrough curve over time.
The comparison with the measured value from Harter’s experiment is shown in
Fig. 10.18.
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Figure 10.17: Tracer transport with advection and dispertion
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Figure 10.18: Colloid transport with sorption-desorption and decay
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10.6.2 Particle Tracking in Porous Medium:
2D Case Study

Definition

A two-dimensional homogeneous aquifer is chosen to verify advective dispersive
transport. The dimension of the model domain is 100m by 60m where the
uniform velocity field is held constant in the x direction (Fig. 10.19).

Analytical Solution

The stated problem can be solved with an analytical solution provided by [96].

C (x, y, t) =
C0A

4πt
√
Dxx +Dyy

exp

[
− (x− x0)

2

4Dxxt
− (y − y0)

2

4Dyyt

]
(10.28)

where C0 is the initial concentration.

Numerical Solution

The domain is discretized with quadrilateral elements of 0.5m by 0.5m. The
same grid density is also used for converting particle distributions to element
concentrations. The head gradient of one in the x direction is set by assign-
ing two constant boundary conditions along both the left and right sides, thus
obtaining the uniform velocity field with the value of 0.5 md−1.

The initial source load is applied to an area with dimensions of 0.1m by 0.1m
to have an initial concentration of C0 = 1 kgm−3. The material properties for
this model setup are given in Table 10.7.

Figure 10.19: Particle tracking in 2D homogeneous aquifer



www.manaraa.com

226 CHAPTER 10 MASS TRANSPORT

Table 10.7: Material properties

Symbol Parameter Value Unit

k Permeability 1.114−11 m2

αL Longitudinal dispersivity 0.1 m
αT Transverse dispersivity 0.1 m

Figure 10.20: Transport results of the RWPT method compared with the ana-
lytical solution for 50,000 particles at 20, 40, and 60 days: The
solid line is the analytical solution, the dotted line is the RWPT
result. Contour lines are shown for C = 2.6e−4, 1.6e−4, 1.0e−4,
and 4e−5

Results

The comparison with the analytical solution is provided in Fig. 10.20. The
number of particles used for this simulation is 50,000. This is significantly less
than the number of particles reported by [155], who stated that up to 2.5 million
particles were necessary to achieve smoothness of the solution due to oscillations
around the contours. As the oscillations observed here for the method proposed
are smaller than reported by [155], the proposed method allows a dramatic
reduction of around two orders of magnitude in the number of particles required
for a smooth solution.

In addition, different numbers of particles are used to solve the same problem,
producing several different particle clouds as shown in Fig. 10.21.
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Figure 10.21: (a–d) Particle clouds of 50,000 particles at 0, 20, 40, and 60 days,
(e) Particle clouds of 1,000, 5,000, 10,000, and 50,000 particles at
60 days

10.6.3 Particle Tracking in Porous Medium:
3D Case Study

Definition

A three-dimensional homogeneous cube is chosen to verify advective dispersive
transport. The side length of the cube model domain is 100m. The velocity
field is held constant in the diagonal direction from the bottom left to top right
(Fig. 10.22).

Analytical Solution

The stated problem can be solved with an analytical solution provided by [96].

C (x, y, z, t) =
C0V

8 (πt)3/2
√
DxxDyyDzz

exp

[
− (x− x0)

2

4Dxxt
− (y − y0)

2

4Dyyt
− (z − z0)

2

4Dzzt

]

(10.29)

where C0 is the initial concentration.
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Numerical Solution

The domain is discretized with tetrahedral elements. The same grid density is
used for converting particle distributions to element concentrations. The head
gradient is set by assigning two constant boundary conditions on the diagonal
joint points.

The initial source load is applied to an area close to the bottom left of the domain
with an initial concentration of C0 = 1 kgm−3. The material properties for this
model setup are given in Table 10.8.

Results

The advection-dispersion of the particles pulse across the cube is shown in
Fig. 10.23. The number of particles used for this simulation is 500. When
particles reached the top right point, the number was counted to generate the
breakthrough curves.

100

100

100

I.C. h=0

B.C. h=1

B.C. h=-1

Figure 10.22: Particle tracking in 3D homogeneous aquifer

Table 10.8: Material properties

Symbol Parameter Value Unit

k Permeability 6.0804−10 m2

αL Longitudinal dispersivity 0.005 m
αT Transverse dispersivity 0.005 m
n Porosity 0.2 −
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Figure 10.23: Particle clouds in the cube

TIME

N
/N

O

200000 400000 600000
0

0.05

0.1

0.15

0.2

0.25

3DCubADE
3DCubRWPT

Figure 10.24: Breakthrough curves for particle tracking with advection and
dispertion

The result of RWPT simulation for the distribution of concentration over time
is compared to the analytical solution. The comparison results are shown in
Fig. 10.24.

10.7 RWPT in Fractures

Fractures may be defined through direct measurement or geo-statistical repro-
duction. In the benchmarks of this chapter, both methods will be utilized.
Where fractures are directly measured, the methodology utilizes a laser profiler.
Profiles (elevation measurements) are taken of each fracture surface and these
are manipulated numerically. Point-wise fracture aperture is the difference
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between the top and bottom surfaces at corresponding locations. Statistically
reproduced fractures reproduce roughness of the aperture (not each surface) in
order to achieve a desired mean and standard deviation. The result is used
directly as the fracture aperture in numerical simulations.

For a fracture represented by two parallel (planar) plates, permeability is a
function of the fracture aperture by the cubic law,

k =
b2

12
(10.30)

For a uniformly fractured rock mass, the cubic law takes form as b3/12s , where
s is fracture spacing.

The aperture, b, however, represents only the mechanical state of the fracture.
In reality, observed flow rates are dependent on the hydraulic state of the frac-
ture. In other words, fracture roughness matters. We therefore distinguish
two different apertures: the so-called “void” aperture, bv and the “hydraulic”
aperture, bh. The void aperture is the mean geometrically measured distance
between the two fracture surfaces, including only those points that are not in
contact (as the name implies, including only voids). The hydraulic aperture is a
correction from this value (bh ≤ bv), with one possibility known as the geometric
correction [156],

b3h = exp 〈ln (k)〉 = exp (3 〈ln (bv)〉) (10.31)

where the angled brackets indicate that the mean is taken over the logarithm
of the point-wise void aperture. Therefore, as an approximation to reality, the
(effective) true permeability of a rough fracture is given by,

k =
b2h
12

(10.32)

In what follows, we use this permeability to approximate behavior of the fracture
and to generate an analytical solution for (qualitative) comparison to simula-
tions within rough fractures, where permeability occurs point-wise (and mechan-
ically) as ki = b2i /12 . Therefore, this is an effective permeability, and shall be
used as an attempt to approximate (or provide reference to) true flow behavior
in a rough fracture from a single bulk property.

10.7.1 Uncertainty in Flow, Preferential Flow

To examine changes to flow characteristics, we utilize two alternate forms of
mass transport: the classical advection-dispersion equation (ADE) and ran-
dom walk particle tracking (Fig. 10.25). The RWPT simulator within OGS is
modified to allow a continuous source of particles (numerically approximate to
a Neumann concentration boundary) for comparison with results from ADE
simulations. For comparison, dispersion is not allowed within the RWPT simu-
lation: particles are only advected with the flow. Therefore, particles represent
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tD = 0.247
t = 10.55s

= 10MPa

tD = 0.250
t = 22.56s

= 20MPa

tD = 0.250
t = 36.34s

= 30MPa

Figure 10.25: RWPT vs. ADE at different stress states. Two separate simula-
tions are conducted and overlay one another. Particle pathlines
(black) and particles (white) are illustrated, and overlay contours
(red = higher concentration) generated from the ADE simulation

the 50% concentration breakthrough if particles are imagined as concentrations.
The plot for each stress state is shown at a different absolute time, but each
corresponds to the same dimensionless time, tD = v · t/L, where t is current
time and L is total flow length, with v calculated from the mean bh. There-
fore, if bh is a good approximation of behavior, the concentration advance in
each plot should be approximately of the same extent. Note that this is true,
but also that the increasing tendency for preferential flow with stress lends to
increasingly less uniform concentration advance: with increasing stress, a given
point in the geometry will record strongly different behavior than its neighbors.
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Chapter 11

Density Dependent Flow

by Marc Walther, Jens-Olaf Delfs, Chan-Hee Park, Jude Musuuza, Florin Radu,
and Sabine Attinger

11.1 Theory

11.1.1 Governing Equations

The governing equations used for variable density flow consist of three funda-
mental conservation equations: (i) continuity equation of flow, (ii) momentum
equation, and (iii) contaminant transport equation. In addition, these three
equations are linked to the equations of the bulk fluid density and the hydrody-
namic dispersion equations.

Equation of the Bulk Fluid Density

The linearized equation of the bulk fluid density under an isothermal state was
formulated in terms of hydraulic head as,

ρ = ρ0 (1 + λh (h− h0) + λcC) (11.1)

where h is the hydraulic head, λ is the reference hydraulic head, ρ is the density
of fluid, ρ0 is the reference density of the fluid, λh represents the coefficient of
compressibility of the fluid associated with the change of the hydraulic head at
constant mass fraction of the solute, λC is the coefficient of expansivity resulting

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 11, © Springer-Verlag Berlin Heidelberg 2012
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from the change of the mass concentration of the solute at constant hydraulic
head and C is the relative concentration.

The relationship between density and concentration can also be approximated
using other representations such as an exponential function as given by Kolditz
et al. [1998]. The equations describing the relationship between density and
other relevant parameters are formulated based on experiments and are approx-
imate relationships.

Another equation for describing the relationship between density and concen-
tration (or mass fraction) is provided by Herbert et al. [1988] and used by
Oldenburg and Pruess [1995]. This equation was derived from the assumption
that when two liquids are well mixed, the masses or the volumes of respective
components are additive. In this study, among these equations which describe
the relationship between density and concentration, the linear equation obtained
from the experiments is chosen to describe the relation between the bulk fluid
density and concentration.

Continuity Equation of Flow

The macroscopic mass balance equation of the fluid averaged over a represen-
tative elementary volume (REV) in a porous medium is

∂ (Sφρ)

∂t
+∇ · (φρ�v) = ρQρ (11.2)

where S is the saturation ratio, φ is the porosity, t is the time, �v is the fluid
velocity vector and ρQρ is the source term of the fluid mass in an aquifer.
Based on (11.2), the flow equation for a variably saturated porous medium can
be written in terms of hydraulic head and mass concentration,

φ
∂S

∂t
+ SSh0

∂h

∂t
+ SφλC

∂C

∂t
+∇ · �q + λc�q · ∇C = Qρ (11.3)

where Sh0 is the specific storativity of a porous medium with respect to hydraulic
head change and �q is the Darcy velocity vector. The head-based flow equation,
(11.3), has the advantage over pressure-based flow equations because numeri-
cally large static pressures may dominate the dynamic pressure differences that
cause motion. The resulting pressure-based numerical scheme may therefore
operate at less than optimum numerical efficiency. A more efficient way is to
write the flow equation in terms of a quantity that can be directly related to
the driving forces. Such a quantity is the equivalent freshwater hydraulic head,
defined as h = p

ρ0g
+ z [Frind, 1982].
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Momentum Equation of Flow (the Darcy Equation)
and Dispersive Flux

The momentum balance equation for variable-density fluid flow in a porous
medium in terms of hydraulic head can be given as

�q = φ�v = − k̂ρ0�g
μ

(
∇h+

(
ρ− ρ0
ρ0

)
�e

)
(11.4)

where k̂ is the tensor of permeability of a porous medium and �e is the unit
vector in the gravitational direction. The dispersion tensor can be written as
Bear [1979]

�

D = γDmδ̂ + αT |v| δ̂ + (αL − αT )
�vi�vj
|v| (11.5)

where γ is the tortuosity, Dm is the coefficient of molecular diffusion, δ̂ is the
Kronecker-delta (unit tensor), αT is the transverse dispersivity, v is the charac-
teristic value of macroscopic velocity with the subscripts i and j in longitudinal
and transversal directions respectively, and αL is the longitudinal dispersivity.

Solute Transport Equation

The solute transport with a source is governed by the following advection-
dispersion equation

∂ (φC)

∂t
+∇ · (φ�vC)−∇ ·

(
φD̂ · ∇C

)
= QC (11.6)

where QC is the source term of the solute in terms of mass concentration.
Ignoring the expansivity resulting from the change of mass concentration λC ,
(11.6) can be written as follows

φ
∂C

∂t
+ (1− φ)λhC

∂h

∂t
+ φ�v · ∇C −∇ ·

(
φD̂ · ∇C

)
+ CQρ = QC (11.7)

Kolditz et al. [1998] defined approximation level of density variations in the
mass equations when (11.2) and (11.6) are expanded.

11.2 The Elder Problem

11.2.1 Definition

The Elder problem is a benchmark to verify density-dependent flow such as free
convection, seawater intrusion, and possibly enhanced gas recovery with CO2.
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Figure 11.1: Boundary conditions of the Elder problem

Table 11.1: Parameters for the Elder problem

Symbol Quantity Value Unit
Dm Molecular diffusion coefficient 3.565e-6 m2 s−1

k Permeability 4.845e-13 m2

μ Dynamic viscosity 10e-6 kgm−1 s−1

g Gravitational coefficient 9.81 m s−2

αL, αT Longitudinal and transverse dispersivity 0, 0 m
φ porosity 0.1 −
ρ0, ρs Density of water and saltwater (1,1.2)e3 kgm−3

Model description. The Elder Problem is a good example of free convection
phenomena, where the fluid flow is driven purely by the density differences of
the fluids. Figure 11.1 illustrates the boundary conditions of the Elder problem.
Table 11.1 presents the specific parameters for the Elder problem used in this
application.

11.2.2 Results

The mesh was created with hexahedral elements for further expansion to 3D
applications. The grid density level is defined as the lth level that consists of
22l+1 identical square elements. Based on the definition of the grid density, the
number of the hexahedral elements is 8192. The isochlor is defined as a ratio
of a density difference to the maximum density difference. Figure 11.2 shows
the numerical results obtained from OpenGeoSys as the solution of the Elder
problem.
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Figure 11.2: Isochlors of the Elder problem for 1, 2, 10, and 20 year at regular
grid of level 6

11.3 The Goswami Problem

11.3.1 Definition

This example shows density dependent groundwater flow under unconfined con-
ditions. The benchmark is based on experimental and modelling data acquired
by Goswami et al, 2007 [157], who show a Henry-like (see [158]) saltwater
intrusion experiment using a laboratory-scale tank.

Goswami showed three steady-state (SS-1, SS-2, SS-3), differing in the hy-
draulic gradient, and two transient (TS-1, TS-2) experiments, one advancing
front condition (from the final states of experiments SS-1 to SS-2) and one re-
ceding front condition (SS-2 to SS-3) experiment, and concurrent simulations
with Seawat.

The model set-up will be as close as possible to the one used by Goswami

exemplarily showing the simulations of SS-1 and TS-1 with OpenGeoSys.

Method. Modifying the Richards-Flow equation [102] with a linear approach
as described by Sugio et al, 1987 [159] the hydraulic flow equation is solved for
the unconfined flow. Additionally, theMass Transport andRichards Flow

processes are coupled via a density correlation as a function of concentration.

Boundary and Initial Conditions. Boundary conditions are shown in
Fig. 11.3: bottom and top horizontal boundaries are no-flow, vertical right and
left hand side boundaries are described via linear pressure gradients (includ-
ing the appropriate densities of fresh water ρf = 1, 000kg· m−3 or salt water
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Figure 11.3: Model domain and boundary conditions after Goswami et al,

2007 [157]

Table 11.2: Parameters of simulation

Parameter Setting

Porosity [−] 0.385
Permeability [m2] 1.239 · 10−9

Reduced permeability [m2] 0.0001
Permeability reduction pressure [Pa] −100

ρs = 1, 026kg· m−3), vertical right and left hand side boundary Isochlor

concentrations Ci are fresh water (i.e. Ci = 0) and salt water (i.e. Ci = 1),
respectively.

For the SS-1 simulation, initial conditions are fresh water for the whole domain,
i.e. a linear pressure gradient with p(z=0.25m) = 0Pa and Ci = 0.

For the TS-1 simulation, initial conditions are the hydraulic and mass transport
steady state of SS-1.

Material properties. The homogeneous, isotropic domain material equals a
medium coarse sand. The corresponding parameters are listed in Table 11.2.

Model domain, grid discretization. The dimensions of the laboratory tank
were 0.53 x 0.26 x 0.027m3; following these measures, a 2D model domain was
set up. The grid discretization was uniform with rectangular quad-elements
sized Δx = Δz = 5 · 10−3m.

Time stepping, Dispersivity, Diffusivity. Time step was chosen to be
Δt = 10s up to a simulation time of tfinal = 4, 800 s = 80min (time until
steady state of simulation); to the end of the simulation, time step size was
increased up to Δt = 160 s.
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Longitudinal dispersivity αL was determined by Goswami’s laboratory
experiments to αL = 10−3m, transversal dispersivity αT was assumed to be
αT = 0.1 · αL = 10−4m.

Diffusion effects were neglected due to the highly advective flow regime.

Stability Based on these model configurations, Peclet criterium is met
within acceptable ranges with

Pe =
Δt · v
Δx

=
10s · 2 · 10−4ms−1

5 · 10−3m
= 0.4 < 1. (11.8)

However, Courant criterium is exceeded by its reglementations with

Co =
Δx

α
=

5 · 10−3m

10−4m
= 50 ≮ 2, (11.9)

which causes some oscillations around the left side Isochlor boundary
condition.

11.3.2 Results

Steady State Figure 11.4 shows the OpenGeoSys simulation result of the
steady-state scenario SS-1 and the typical circulation patterns of a saltwater
intrusion, Fig. 11.5 shows the comparison of the experimental measurements
with the modeling software outputs of SS-1 for Seawat and OpenGeoSys;
the scenario simulations fit very well to the experimental observations. The
slight deviations of both simulations may be due to the misfit of the Courant

criterium, to inhomogeneities within the sand material, or to the measurement
technique used to obtain the 0.5-Isochlor isolines, which was a simple visual
observation of the dyed salt water. Goswami describes it as follows: “The
color variations [...] indicate that the dispersion zone is relatively narrow and is
estimated to be about 1cm wide. Therefore the wedge delineation line [...] (which
is assumed to be the 0.5 isochlor) has an error in the range of ±0.5cm [...]”.
As the dispersion zone was estimated to be about 1cm wide, the 0.5-Isochlor
isoline (identified as described by Goswami) could very well also be a 0.1 or
0.9-Isochlor isoline.

Note: Recently, an interesting work was done by this group concerning this issue,
i.e. image analysis used for concentration measurements: see [160].

In addition, Table 11.3 shows an overview of the right boundary’s inflow from
Goswami’s measured experimental data, the Seawat results and the equivalent
values simulated with OpenGeoSys. Again, both simulation outputs resemble
the measured experimental data within acceptable error limits.
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Figure 11.4: Isochlor-concentration, flow field and grid resolution of the
OpenGeoSys steady-state simulation SS-1

Figure 11.5: Comparison of the 0.5-Isochlor concentration isolines of
Goswami’s experimental data with his Seawat and the Open-

GeoSys steady-state simulation

Table 11.3: Simulation results: right boundary influx [cm3· s−1]

Origin of value SS-1

Experiment 1.42
Seawat 1.46
OpenGeoSys 1.41

Transient State Figure 11.6 depicts the comparison of the transient simula-
tion of the experiment with both numerical models. While Seawat seems to
fit the measurements quite well, OpenGeoSys shows slight differences; both
results however, resemble the experimental data in an adequate way.
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Figure 11.6: Comparison of the 0.5-Isochlor concentration isolines of
Goswami’s experimental data with his Seawat and the Open-

GeoSys transient simulation TS-1

Figure 11.7: Model set-up

11.4 The Schincariol Problem

11.4.1 Definition

The studies investigated the fingering patterns that result when, for example
saline water intrudes into a confined coastal aquifer. The configuration used
in [161] was used where a solute was allowed to flow into the study domain
shown in Fig. 11.7 with pressure heads maintained over the vertical boundaries
to sustain a mean horizontal flow.
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Table 11.4: Simulation parameters

Parameter Notation Value Unit

Porosity φ 0.38 –
Molecular diffusion coefficient of NaCl Dm 1.61× 10−9 m2· s−1

Longitudinal dispersivity α‖ 1.0× 10−3 m
Transverse dispersivity α⊥ 2.0× 10−4 m
Mean flow velocity v0 2.75× 10−6 m·s−1

Domain Length in flow direction L 1.0625 m
Viscosity of pure water at 20◦C μ0 1.002× 10−3 Pa· s
Maximal viscosity of solution μmax 1.006× 10−3 Pa·s
(2,000mg/l NaCl at 20◦C)

Density of pure water at 20◦C ρ0 998.2 kg·m−3

Maximal density of solution ρmax 999.7 kg·m−3

(2,000mg/l NaCl at 20◦C)
Tortuosity ς 0.35 –
Gravity vector g −9.81 m·s−2

Mean permeability k0 5.7× 10−11 m2

(a)Pe=16.5,Cr=0.22 (b)Pe=8.40,Cr=0.40 (c)Pe=2.32,Cr=1.10

Figure 11.8: A reproduction of Schincariol results with full equations

Domain setup. Using the simulation parameters in Table 11.4, the grid and
time steps were refined until a solution free of numerical artifacts was obtained.

11.4.2 Results

Their results at the approximate Pèclet and Courant numbers were nearly ex-
actly reproduced in [162] as shown in Fig. 11.8. The Pèclet and Courant numbers
reported in the figure were obtained with mesh sizes of 0.3 with 4 refinements
and a time step of 1 hr; 0.3 with 5 refinements and a time step of 45min; and
0.2 with 5 refinements and a time step of 57min. The reproducibility of the re-
sults makes the problem defined by [161] a suitable reference from which further
investigations can be founded.

Due to the rotation of the velocity field caused by density variations in the
boundary layer, some salt accumulates and is trapped in the tip of the of the
plume. Therefore, the ever-present lobe at the tip does not count as a finger



www.manaraa.com

11.4 THE SCHINCARIOL PROBLEM 245

(a) ρ = 999.7 kg · m−3 (b) ρ = 1000.4 kg · m−3 (c) ρ = 1002.0 kg · m−3

Figure 11.9: Fingering patterns at various densities

and Fig. 11.8(c) is considered to be free from instabilities. This numerically
stable configuration was further used by [161] to study the effect of periodically
varying the width of the inflow region and by [163] to study the effect of medium
heterogeneity on fingering patterns. It was also used in [162] to investigate
the effects of physical variables like density, viscosity and flow velocity on the
evolution of fingers.

Sample results from numerical studies in [162] without the Oberbeck-Boussinesq
approximation are shown in Fig. 11.9.
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Multiphase Flow Processes

by Chan-Hee Park, Joshua Taron, Ashok Singh, Wenqing Wang,
and Chris McDermott

In this chapter, we consider two-phase flow processes and examine two alternate
combinations of primary variables in the solution of the governing equations:
(1) pressure-pressure and (2) pressure-saturation. These combinations are ex-
plained in the following sections.

12.1 Isothermal Two-Phase Flow

This section ignores temperature effects and the partially saturated sample is
treated as an immiscible two-phase system within the voids of the solid skeleton.
In the pressure-pressure formulation the primary variables are (1) gas pressure
pg and (2) capillary pressure pc. In the pressure-saturation formulation the pri-
mary variables are non-wetting phase saturation Snw and wetting-phase pres-
sure pw. In the benchmarks shown here, both fluids are assumed incompressible.

12.1.1 Mass Balance Equation

Consider two-phase flow in porous media, e.g liquid (denoted by l) and gas
(denoted by g). For each phase in two-phase fluid flow, mass conservation is
given by the following equation,

∂

∂t

(
nSgρgk + nSlρlk

)
+∇ · (Jgk + Jlk

)
= Qk, (12.1)

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 12, © Springer-Verlag Berlin Heidelberg 2012
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where S is saturation, ρ stands for phase density, n is the porosity, J is total
flux. The subscript k in (12.1) denotes the component, e.g air (k = a) or water
(k = w), within each phase, γ = (g, l). For any phase γ = (g, l), an advection
vector JA

γ
k and a diffusion vector JD

γ
k comprise the total flux, i.e,

Jγk = JA
γ
k + JD

γ
k. (12.2)

According to Darcy’s law, the advective part of the total flux may be written as

JA
γ
k = −ργk

kkγrel
μγ

(∇pγ − ργg) , (12.3)

where k is the intrinsic permeability, kγrel is the relative permeability of the
phase, and μγ is the viscosity.

The diffusive part of the total flux is given by Fick’s law

JD
γ
k = −nSγργDγk∇

(
ργk
ργ

)
, (12.4)

where D is the diffusion coefficient tensor. Since ργ = ργa + ργw, we have

JD
γ
w + JD

γ
a = 0 (12.5)

under the assumption D
γ
a = D

γ
w.

Consider a water-air mixture. We expand the mass balance equation (12.1) with
the flux defined in (12.2) based upon the above (12.2)–(12.4). For the water
component, the diffusive part of the total flux takes the form

JD
l
w = −nSlρlDlw∇

(
ρlw
ρl

)
, JD

g
w = −nSgρgDgw∇

(
ρgw
ρg

)
. (12.6)

Obviously, Dlw = 0. Therefore, the mass balance equation for water component
can be written as follows

∂

∂t

(
nSgρgw + nSlρlw

)−∇ ·
[
ρlw

kklrel
μl
(∇pl − ρlg

)]

−∇ ·
[
ρgw

kkgrel
μg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDgw∇

(
ρgw
ρg

)]
= Qw. (12.7)

Since the capillary pressure pc is chosen as one of the two unknowns of (12.1)
and Sg = 1− Sl, (12.7) becomes

n(ρlw − ρgw)
∂Sl

∂t
+ (1− Sl)n

∂ρgw
∂t

−∇ ·
[
ρlw

kklrel
μl
(∇(pg − pc)− ρlg

)]

−∇ ·
[
ρgw

kkgrel
μg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDgw∇

(
ρgw
ρg

)]
= Qw. (12.8)
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Similar to the previous procedure, the diffusion part of the total flux of air
component can be written as

JD
l
a = −nSlρlDla∇

(
ρla
ρl

)
, JD

a
a = −nSgρgDga∇

(
ρga
ρg

)
. (12.9)

The density shift from air component to liquid ρla is very small and can be
omitted. Therefore, we can assume JD

l
a ≈ 0. As a consequence, the mass

balance equation for air component is derived:

∂

∂t
(nSgρga)−

∇ ·
[
ρga

kkgrel
μg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDga∇

(
ρga
ρg

)]
= Qa. (12.10)

Expanding the temporary derivative term of (12.10) yields

−nρga
∂Sl

∂t
+ (1− Sl)n

∂ρga
∂t

−

∇ ·
[
ρga

kkgrel
μg

(∇pg − ρgg)

]
−∇ ·

[
nSgρgDga∇

(
ρga
ρg

)]
= Qa. (12.11)

The mass balance equations (12.8) and (12.11) are exactly the same as described
in [164].

12.1.2 Pressure–Pressure (pp) Scheme

Based on the description of isothermal two-phase flow above, (12.8) and (12.11)
can be modified in order to obtain governing equations for isothermal two-phase
flow in a porous medium. In this formulation primary variables are gas pressure
pg, and capilary pressure pc.

The basic equations of the isothermal two-phase flow system are:

nρw
∂Sw
∂pc

ṗc +∇ ·
[
ρw

kkrelw
μw

(−∇pg +∇pc + ρwg)

]
= Qw (12.12)

−nρa ∂Sw
∂pc

ṗc + n(1− Sw)

(
∂ρa
∂pg

ṗg +
∂ρa
∂pc

ṗc

)
+

∇ ·
[
ρa

kkrela
μa

(−∇pg + ρag)

]
= Qa (12.13)
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12.1.3 Pressure-Saturation (pS) Scheme

Based on the description of the isothermal two-phase flow above, (12.8) and
(12.11) can be modified in order to obtain governing equations for the isother-
mal two-phase system. Primary variables of this formulation are wetting phase
pressure pw, and non-wetting phase saturation Snw. The equations are simply
algebraic manipulations of those in the previous section.

12.1.4 Liakopoulos Experiment

Definition

This benchmark is based on an experiment by Liakopoulus [165] and is proposed
by Lewis and Schrefler [14] (pp 167–174). The benchmark is simulated with
different element types using the pressure-pressure scheme. The grids used in
such simulations are illustrated in Fig. 12.1. Material properties are provided in
Table 12.1.

Results

The temporal evolution of vertical profiles of primary variables (capillary and
gas pressure) are given in Fig. 12.2. Figure 12.3 shows the vertical profiles for
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Figure 12.1: Grids with different element types for the Liakopoulos benchmark
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Table 12.1: Material parameters for the Liakopoulos problem

Property Symbol Value Unit

Porosity n – 2.975× 10−1

Permeability κ m2 4.5000× 10−13

Liquid dynamic viscosity μw Pa·s 1.0000× 10−3

Gas dynamic viscosity μa Pa·s 1.8× 10−5

Liquid density ρw kgm−3 1.0000× 103

Gas density ρa kgm−3 Ideal Gas Law’s
Capillary pressure pc Pa Experimental Curve
Relative permeability κrelw – Experimenta Curve
Relative permeability κrela – Brook–Corey functions

water saturation as a secondary variable. The results agree well with the findings
by Lewis and Schrefler [14].

The results of the element test are depicted in Fig. 12.4 for capillary pressure.
A comparison of the results between the two-phase flow model and the Richards
model can be found in Chap. 6.

12.1.5 Buckley–Leverett Problem

Buckley and Leverett [166] developed a semi-analytical solution for the displace-
ment of two immiscible fluids in porous media. Assuming constant fluid density
and porosity, and no source/sink terms, the fluid mass balance equation can be
simplified to obtain

n
∂Sγ

∂t
= −∇ · qγ . (12.14)

Buckley and Leverett derived the following expression

∂Sl

∂f l
=
qtot
n

Δt

Δx
(12.15)

with the fractional flow function fγ = qγ/qtot

f1 =

(
1 +

μ1

k1

k2
μ2

)−1

(12.16)

where 1 and 2 are the fluid phase numbers. The position of the shock front
separating the two fluid phases can be calculated from the following expression

Δx = −qtot
n

∂f l

∂Sl
. (12.17)
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Figure 12.2: Vertical profiles of capillary (top) and gas pressures (bottom)

Buckley and Leverett suggested that the capillary pressure is a function of the
saturation only. Note that the original Buckley–Leverett solution considered
phases of water and oil. Moreover, they assumed that the condition that the
derivative of capillary pressure with respect to saturation is zero (dpcwo/dSwo =
0) is a sufficient rationale to ensure that the spatial gradients of water and oil
pressure are equal to one another, as expressed in the following equation,
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∂pw
∂x

=
∂po
∂x

+
∂pcwo
∂x

=
∂po
∂x

+
dpcwo
dSw

∂Sw

∂x
=
∂po
∂x

. (12.18)

Definition

The Buckley Leverett problem is frequently used to test numerical models for
the functional relation between relative permeability and saturation. In com-
parison to the analytical solution, the problem is simplified to describe one fluid
displacing the other residing fluid in aquifers or reservoirs. In the derivation of
the analytical solution, the effect caused by capillary forces between two fluids
is not considered.

A non-wetting phase displaces a wetting phase from left to right. The initial
total velocity of the two-phase system is 1.0m/s. The ratio of the dynamic
viscosities is one, residual saturations are zero and the Brooks–Corey function
(λ = 2) is used for the relative permeabilities. A space-time discretization of
delta x = 0.025 m and delta t = 0.005. The total simulation time is 0.4 s.

Results: pS-Global

The mass conservation equation is converted to a volumetric one by dividing
through by fluid density,

n
∂Sw
∂t

−∇ ·
(
kkrelw
μw

(∇pw − ρwg)

)
= qw (12.19)

n
∂Snw
∂t

−∇ ·
(
kkrelnw
μnw

(∇pnw − ρnwg)

)
= qnw. (12.20)

In the pressure-saturation scheme, OpenGeoSys solves these two equations in
a global-implicit scheme or as a total pressure based sequential coupling. As
shown in Fig. 12.5, the global-implicit scheme produces more accurate results
compared to that obtained by the sequential-coupling scheme. The result has
little oscillation and is closer to the analytical solution, particularly in the loca-
tion of the sharp front of the intruding fluid.

One important note is that the global scheme is sensitive to matrix solvers.
The LIS solver (BiCG with Jacobi preconditioned) works well on Windows.
However, this iterative solver for this benchmark takes much more time than the
PARDISO (a parallel direct solver) that works only on Unix with OpenGeoSys.

Results: pS-Sequential

Adding (12.19) and (12.20) and using the relation Snw + Sw = 1 and pc(Sw) =
pnw − pw, we get the equation for wetting phase pressure, pw and non-wetting
phase saturation, Snw.
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Figure 12.6: Comparison of grid discretizations for the BL problem with sequen-
tial coupling

−n∂Snw
∂t

−∇ ·
(
kkrelw
μw

(∇pw − ρwg)

)
= qw (12.21)

∇ ·
(
kkrelw
μw

(∇pw − ρwg)

)
+∇ ·

(
kkrelnw
μnw

(∇pw + pc − ρnwg)

)
+

qw + qnw = 0 (12.22)
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In (12.21), non-wetting phase saturation, Snw can be easily solved explicitly
with the known pressure obtained from (12.22). The analytical solution for the
frontal location of the infiltrating fluid is compared with alternate discretizations
in Fig. 12.6. The diffusion term for saturation omitted in the BL equation makes
the analytical solution purely advective, with a sharp advancing front. Handling
this purely advective transport in numerical models introduces some numerical
dispersion, and tighter discretizations will capture the low diffusive front with
greater accuracy.

Results: CO2 Injection

Based on the Buckley and Leverett solution, we assume saturated CO2 dis-
placing H2O with constant fluid properties. Figure 12.7 shows the saturation
profile, Sw, along 1 m column calculated with line element with space-time dis-
cretization of δx = 0.025 m and δt = 0.005 s. The total simulation time is 0.4 s;
using the global implicit pressure-saturation model. Based on linear relation be-
tween saturation and relative permeability, the saturation profile, Sw is shown
in Fig. 12.8. Material parameters of the problem are provided in Table 12.2.

12.1.6 McWhorter Problem

It is assumed that the flow of both wetting and non-wetting phases can be ade-
quately described by Darcy’s law if the phases are immiscible and incompressible
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Figure 12.7: Saturation profile obtained with present analysis along with others
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Figure 12.8: Saturation profile obtained with Brooks–Corey relative permeabil-
ity function and a linear permeability-saturation function

Table 12.2: Material parameters for the BL problem

Property Symbol Value Unit

Column length L m 1.0
Porosity n – 2.0× 10−1

Permeability κ m2 1.0× 10−10

Water dynamic viscosity μw Pa·s 1.0× 10−3

Gas dynamic viscosity μnw Pa·s 7.0343× 10−4

Water density ρw kgm−3 1.0× 103

Gas density ρnw kgm−3 7.73× 102

Capillary pressure pc(S) Pa 0
Relative permeability κrel(S) – Brook–Corey functions

n
∂Sγ

∂t
+∇ · qγ = 0, γ = w, nw (12.23)

qγ = −Kλγ∇pγ (12.24)

where λw and λnw are mobility of the wetting and non-wetting fluid. Both
phase are linked by the state equation Sw + Snw = 1 and pc = pg − pw. Here
total flux, qt = qw + qnw and pc is a function of Sw.

A formulation that is often used for two phase flow problems is the so-called
fractional flow model. The attractiveness of this formulation is that the model
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becomes more accessible to analysis. Subtracting (18.1.24) for both phases
we have

qw = fqt −D
∂Sw
∂x

(12.25)

where

f =
1

1 + λnw
λw

, D = −λnwf ∂pc
∂Sw

. (12.26)

The first term on the right of (12.25) dictates the rate at which flux is injected
on the boundary and the second term represents the additional force due to
the gradient of capillary pressure. Inserting (12.25) into (12.28) for the wetting
phase and assuming that total flux, qt is space invariant

∂

∂x

(
D
∂Sw
∂x

)
− qt

∂f

∂Sw

∂Sw
∂x

= n
∂Sw
∂t

. (12.27)

In the last benchmark (Buckley and Leveret) it is assumed that the force due
to the gradient of capillary pressure is very small relative to total flux, qt, and
hence the second order term is suppressed in the equation.

Including capillarity, model verification can occur against the analytical solution
of McWhorter and Sunada ([167]). They developed an exact quasi-analytical
solution of (12.27) for unidirectional displacement of a non-wetting phase by a
wetting phase using the concept of a fractional flow function.

The fractional flow function is defined as the ratio of wetting phase flux, qw to
the total flux, qt. It has been shown that this ratio is function of Sw only, when
qt is inversely related to the square root of the time.

Definition

The test benchmark problem for capillary effects is formulated as if the instan-
taneous displacement occurs in a one-dimensional horizontal reservoir initially
occupied by oil (Fig. 12.9). The solution is obtained by solving the governing
equations (12.13) with the pressure-pressure scheme described above. Different
from the Buckley-Leverett problem, here flow is governed by capillary forces
when water saturation at the left end of the horizontal column is kept at one,
while the right end is kept at zero flux. Therefore, no source term exists, and
flow is by capillary force alone.

Results

Based on the above discussion, OpenGeoSys produces an agreeable solution.
Figure 12.10 shows the water saturation profile, Sw with a fine grid along with
2.6m long horizontal column for different time steps. Line elements have been
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Figure 12.9: Schematic of the benchmark formulated to test McWhorter and
Sunada’s analytical solution
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Figure 12.10: Water saturation, Sw profile of the present result along with
ananalytical solution based on one by McWhorter

used with the time and space discretization δt = 0.5 s and δx = 0.05m respec-
tively.

Next, we solve exactly the same problem using the total pressure based pressure-
saturation model in a sequential iterative coupling scheme. Unlike the pressure-
pressure model, one downside for the total-pressure-based saturation model is
that it is less accurate for problems dominated by capillarity (see Fig. 12.11).
Since the pressure-pressure model directly solves for capillary pressure as a
primary variable, the model has an advantage for the capillary related problems.
On the other hand, the total-pressure-based saturation model is limited to the
problems when dPc/dSw is close to zero. The condition for dPc/dSw close to
zero is caused physically in the case of fractures, shear zones, and transitions
between heterogeneities (Table 12.3).
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Figure 12.11: Water saturation, Sw profile in sequential iterative coupling
scheme

Table 12.3: Material parameters for the McWhorter problem

Property Symbol Value Unit

Column length L m 2.6
wetting dynamic viscosity μw Pa·s 1.0× 10−3

non-wetting dynamic viscosity μnw Pa·s 1.0× 10−3

wetting phase density ρw kgm−3 1.0× 103

Non-wetting phase density ρnw kgm−3 1.0× 103

Permeability K m2 1.0× 10−10

Porosity n − 3.0× 10−1

Residual saturation of water Srw − 0
Residual saturation of oil Snrw − 0
Entry pressure pd Pa 5.0× 103

Soil distribution index λ − 2.0
Capillary pressure pc(Seff ) Pa Brooks–Corey model
Relative permeability κrel(Seff ) − Brooks–Corey model

12.1.7 Kueper Problem

Both primary variable schemes are now further tested with a benchmark chosen
to examine two-phase flow in heterogeneous media. Kueper and Frind developed
a model to simulate their experiment for DNAPL penetration ([168]). The
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simultaneous movement of a dense non-wetting phase (DNAPL) through an
initially wetting phase (water) saturated heterogeneous porous media may be
represented mathematically as a case of two-phase flow. A distinctive feature
of the solution is that the primary variables solved for wetting phase pressure
and wetting phase saturation, are both existent throughout the solution domain
regardless of whether the non-wetting phase is present.

The continuity equation of each phase (γ) can be defined by

∂(nργSγ)

∂t
+∇ · (ργqγ) = Qγ , γ = w, nw (12.28)

where n is porosity, Sγ is saturation, ργ is density, Qγ is a source or sink term,
and qγ is the Darcy velocity for phase γ defined by

qγ = −K
κγr
μγ

(∇pγ − ργg), γ = w, nw (12.29)

where κγr is relative permeability, μγ is viscosity, pγ is pressure for phase γ, K
is intrinsic permeability tensor and g is the gravitational vector.

Inherently for saturation, the sum of all saturation in pore space is

∑
Sγ = 1. (12.30)

Assuming relative preference (i.e., wettability) of the fluid to media exists and
it is not negligible, the capillary pressures relation for a two-phase system is
defined over representative elementary volume (REV) by

pc = pnw − pw (12.31)

where pc is capillary pressure, pnw is pressure for the non-wetting phase fluid
and pw is the wetting phase fluid.

Definition

A 60 cm × 80 cm × 0.6 cm parallel-plate glass-lined cell was packed with four
types of sands and initially fully saturated with water. The configuration of
the assembled sand lenses and the two sets of the boundary conditions for the
pw − Snw and pc − pnw schemes are illustrated in Fig. 12.12. Concerning the
constitutive relation between relative permeability and saturation and capillary
pressure and saturation, they have used the Brooks–Corey model.

Properties of sands for the Brooks–Corey model are measured experimentally
and summarized in the following tables. The numerical solutions obtained from
the pw − Snw scheme and the pc − pnw scheme for the benchmark of [168] are
compared against each other in Fig. 12.13 (Tables 12.4–12.6).
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Figure 12.12: Configuration of heterogeneous media in parallel-plate cell

Results

Both schemes produce DNAPL plume propagation physically until the plume
reaches the less permeable media under the top medium in the model do-
main. The striking difference occurs at the interface between these two media.
While the pwSnw scheme simulates the plume to infiltrate into the less previ-
ous medium, the pc − pnw scheme forces the plume to bypass the less previous
medium. A similar experiment and simulation comparison against experimental
observation is also conducted by Helmig and Huber [169]. They have reported
unphysical fluid behavior captured by the pw−Snw scheme, a phenomenon that
can be avoided with a fully upwind technique ([169]).

12.2 Non-isothermal Two-Phase Flow

The multiphase formulation is now extended to examine temperature effects in
porous systems.

12.2.1 Heat Pipe Problem

When an unsaturated porous medium is subjected to a constant heat flux and
the temperature is sufficiently high, water is heated and vaporizes. Vapor flows
under its pressure gradient towards the cooler end where it condenses. Vaporiza-
tion and condensation produce a liquid saturation gradient, creating a capillary
pressure gradient inside the porous medium. Condensate flows towards the hot
end under the influence of a capillary pressure gradient. This is a heat pipe in
an unsaturated porous medium.
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Figure 12.13: Comparison of the results obtained from the pw − Snw and
pc − pnw schemes. The second column shows good agreement
with observed distribution of DNAPL of the experiment [168])

Udell and Fitch derived the pressure gradient of each phase in two-phase flow
with heat transfer. The generalized form of the Darcy’s law is used to calculate
velocity fields

dpg

dx
=

ηqνg

kkrgHvap
(12.32)

dpl

dx
= − ηqνl

kkrlHvap
(12.33)
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Table 12.4: Fluid and medium properties

Fluid properties Unit Wetting fluid Non-wetting fluid
Density kgm−3 1.0× 103 1.0× 103

Viscosity Pa · · · 1.0× 10−3 1.0× 10−3

Residual saturation − 0.0 0.0
Maximum saturation − 1.0 1.0

Table 12.5: Space and time discretization

Medium properties Unit Medium
Δx m 0.01
Δt s 100
Porosity − 0.3
Intrinsic permeability m2 1× 10−10

Brook–Corey’s index − 2
Entry pressure Pa 5× 103

Table 12.6: Hydraulic properties of sands for the Brooks–Corey model

Property Pd(Pa) λ(-) Swr(-) k(m2) n(-)
1 369.73 3.86 0.078 5.04× 10−10 0.40
2 434.45 3.51 0.069 2.05× 10−10 0.39
3 1323.95 2.49 0.098 5.26× 10−11 0.39
4 3246.15 3.30 0.189 8.19× 10−12 0.41

where η is the ratio of heat transport caused by convection to the total heat-flux
q (see Helming [1997]), p is phase pressure; νγ = μγ

ργ ; x is space coordinate in
the x-direction; k is intrinsic permeability; krγ is relative permeability and Hvap

is latent heat of water. γ is the phase superscript and g, l stand for gas and
liquid phase, respectively. Gas pressure is the sum of two partial pressure, i.e.
pg = pga + pgw.

The density of the gas phase is the sum of air and vapor density. Air density is
according to ideal gas equation,

ρga =
Mapa
RT

. (12.34)

Energy transport is described by Zhou et al. [1990] as

q = −κapp∂dT
dx

+ ṁvapHvap (12.35)
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where, T is temperature, κapp is apparent thermal conductivity. Since capillary
pressure is the difference of phase pressure, hence from (12.31, 12.32–12.33),
the capillary pressure gradient is

dpc

dx
=

ηq

kHvap

[
νg

krg
+
νl

krl

]
. (12.36)

Brooks–Corey presented a water saturation-capillary pressure relation in the
following form

S =

(
Pd

pc

)λ
(12.37)

By comparing this with Leverett’s [1941] non-dimensional form we get

Pd=σ0
(
n
k

)0.5
and n is medium porosity. σ0 is interfacial tension at reference

temperature T0. Here, S is scaled as following

S =
Sw − Slr

1− Slr − Sgr
. (12.38)

The constants Slr, Sgr are residual saturations. And for interfacial tension we
have used the following correlation given by Olivella and Gens [2000]

σ(T ) = 0.3258C1.256 − 0.148C2.256; T ≤ 633.15K, (12.39)

where, C = 1.0− T
647.3 K . The Brooks–Corey relative permeability relations are

krg = (1− S)
2
(
1− S

2+λ
λ

)
; krl = S

2+3λ
λ . (12.40)

Using (12.36–12.37), we can write the following forms of saturation gradient

dS

dx
=
S1.5

Pd

2ηq

kHvap

[
νg

krg
+
νl

krl

]
. (12.41)

Now (12.41) is integrated over the two-phase zone. Where the two-phase zone
can be defined by imposing the limits of integration (see Udell [1985]): S = S0

at x = 0 and S = S1 at x = L. The saturation vapor density ρsat, depends on
temperature, and is estimated by following relation

ρsat = 1.0× 10−3 exp

(
a− b

T

)
, (12.42)

where the constants a = 19.81 and b = 4975.9. In the porous medium, we
must account for a decrease in vapor density due to capillarity. The amount of
decrease in vapor density is describe by the Kelvin equation as follows

ρgw = ρsat exp

(
−Mwp

c

ρlRT

)
(12.43)
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where Mw is water molecular weight; ρl is liquid density and R is universal gas
constant. From (12.42–12.43), we get temperature as function of vapor density
and capillary pressure as

T =
A

B
(12.44)

where

A = b+
Mwp

c

ρlR
;B = a− 3− log (ρgw)

ρgw is temperature dependent, which introduces difficulty for the temperature
calculation. Hence we need to know temperature gradient, which is possible
from (12.44) along with the vapor pressure gradient

dpgw
dx

=
ηqνgw

kkrgHvap
. (12.45)

The form of the temperature gradient is

dT

dx
=

BMw

ρlR
dpc

dx + A
pgw

dpgw
dx

B2 + A
T

. (12.46)

Apparent thermal conductivity can be obtained from heat flux divided by tem-
perature gradient (see Udell [1985]. The coupled differential equations (12.32),
(12.36), (12.41) and (12.46 ) are integrated using an Euler method with the
following boundary conditions at x = 0

S = S0; pg = pg0; pc = pc0; T = T0. (12.47)

Material parameters are presented in Table 12.7.

Table 12.7: Material parameters for the heat pipe problem

Meaning Symbol Value Unit
Column length L m 2.6
Liquid dynamic viscosity μl Pa.s 1.0× 10−3

Gas dynamic viscosity μg Pa.s 1.0× 10−5

Liquid density ρl kg.m−3 1.0× 103

Permeability k m2 1.0× 10−13

Porosity n − 0.3
Residual saturation of water Srl − 0.2
Residual saturation of oil Srg − 0
Soil distribution index λ − 2.0
Capillary pressure pc(S) Pa Brooks–Corey model
Relative permeability κrγ(S) − Brooks–Corey model
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Figure 12.14: Schematic of the benchmark
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Figure 12.15: Comparison of water saturation and pressure profiles from present
solution with an analytical solution

x(m)

T
em

p
er

at
u

re
 (

°C
)

-0.5 0 0.5 1 1.5 2 2.5 3

65
70

75
80

85
90

95
10

0
10

5

Present FEM solution
Analytical Solutions

Figure 12.16: Comparison of the temperature profile from present solution with
an analytical solution



www.manaraa.com

268 CHAPTER 12 MULTIPHASE FLOW PROCESSES

Definition

The test benchmark problem for heat pipe effects is formulated in one-dimension.
A horizontal column of length 2.6 m is filled with fluid subjected to a constant
heat flux at the right end and where the left end temperature is maintained
beneath the saturation temperature (Fig. 12.14).

Results

In order to establish non-isothermal two-phase flow in OpenGeoSys, we have
verified numerical solutions with analytical results. Profiles of water saturation
Sw, gas phase pressure pg, liquid phase pressure pl and temperature T are
presented in Figs. 12.15, and 12.16. Numerical solutions are agreeable. Line
elements have been used with variable time steps and a non uniform space
discretization. We use a combined monolithic/ staggered coupling scheme i.e.
monolithic for the two-phase flow and staggered for the heat transport.
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Chapter 13

Consolidation (HnM)
Processes

by Joshua Taron, Norihiro Watanabe, and Wenqing Wang

The purpose of the benchmarks in this chapter is to test the validity of coupled
hydro-mechanical (HM) and two-phase hydro-mechanical (H2M) processes. Me-
chanical compression generates a fluid pressure response, while pressure storage
and dissipation modify the mechanical condition via the effective stress. The
tests we use are convenient and fundamental validations of the deformation
and flow modules, most importantly guaranteeing that the coupling is correct
between them.

We examine real systems, where fluids, solids, and solid grains are compressible.
In the single phase case, comparisons are made between two finite element cou-
pling schemes: 1) Monolithic: solid and fluid equations solved in a single matrix
and 2) Staggered: solid and fluid equations solved iteratively. Two-phase flow
consolidation is also examined and then an adapted form of extended finite ele-
ments (XFEM) is used to observe the fluid-mechanical interaction in a discrete
fracture-matrix system.

13.1 Single Phase Consolidation

Let us begin by introducing a few governing equations.

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 13, © Springer-Verlag Berlin Heidelberg 2012
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13.1.1 Fluid Mass and Momentum Balance

Linear momentum balance for the fluid follows Darcy:

vri = φ (vi − vsi) = −kij
μ

(
∂p

∂xj
+ ρgj

)
, (13.1)

for the intrinsic permeability, kij , dynamic viscosity, μ, and density, ρ. The
subscript r considers that fluid velocity is relative to motion of the deformable
solid (vsi), so that vi is absolute fluid velocity, and vri is relative. Conservation
of fluid mass requires,

∂

∂t
(φρ) +

∂

∂xi
(φρvi) = 0. (13.2)

Fluid properties are functions of temperature and pressure. The fluid density
time derivative appearing in the mass balance equation may be expanded to

dρ

dt
= ρ

(
1

Kp
f

dp

dt
− 1

KT
f

dT

dt

)
, (13.3)

with fluid compressibility given by 1/Kp
f = (1/ρ) (∂ρ/∂p)|T and for the fluid

thermal expansion coefficient 1/KT
f = − (1/ρ) (∂ρ/∂T )|p. In these definitions

we utilize moduli (K = inverse compressibility). Also, because thermal ef-
fects are not considered in these examples, the temperature dependence may
be neglected. Utilizing the Lagrangian total derivative of a component relative
to the moving solid, ds/dt = ∂/∂t + vsi∂/∂xi, and a moving fluid, df/dt =
∂/∂t + vfi∂/∂xi, substituting for absolute fluid velocity and dividing through
by density gives,

φ

(
1

Kp
f

dp

dt
+
dsφ

dt
+
∂vsi
∂xi

)
= − ∂

∂xi
(vri) . (13.4)

To obtain the porosity time derivative, we expand the solid mass balance to
obtain

dsφ

dt
=

(1− φ)

ρs

∂ρs
∂t

+ (1− φ)
∂vsi
∂xi

. (13.5)

Substituting this gives,

φ

Kp
f

dp

dt
+

[
∂vsi
∂xi

+
(1− ρs)

ρs

∂ρs
∂t

]
= − ∂

∂xi
(vri) . (13.6)
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Utilizing Biot’s formulation to represent the solid density time derivative and
assuming small strain yields the full fluid mass balance ([170] and [171]),

⎛
⎜⎜⎜⎝

φ

Kp
f

+

A︷ ︸︸ ︷
(α− φ)

Kg

⎞
⎟⎟⎟⎠
dp

dt
+

B︷ ︸︸ ︷
α
∂vsi
∂xi

= − ∂

∂xi
(vri) , (13.7)

where Kg is the solid grain bulk modulus, and α is the Biot-Willis coefficient
(α = 1−K/Kg in an ideal, fully interconnected porous media). The bracketed
terms A and B represent important couplings from the mechanical system to
that of the fluid. All are vital in the HM procedure and without them the
equation simplifies to a standard fluid flow equation with fluid compressibility
storage in the pressure time derivative.

13.1.2 Solid Momentum Balance

We begin with the concept of effective stress,

σ′
ij = σij + αpδij , (13.8)

for the effective stress, σ′, and the total stress, σ; negative in compression.
Balance of linear momentum is defined by,

∂σij
∂xj

+ Fi = 0, (13.9)

for the body force, F = ρmg and where ρm = φρf + (1 − φ)ρs is density of
the mixture. From the definition of strain, εij = (∂ui/∂xj + ∂uj/∂xi) /2, and
an arbitrary stress-strain relationship of the form σ = Dε (u), we write the
displacement formulation of mechanical equilibrium (neglecting thermal effects)
for isotropic linear elasticity,

∂

∂xj

[
G
∂ui
∂xj

+ (λ+G)
∂uj
∂xi

− αpδij

]
+ Fi = 0, (13.10)

whereG and λ are the Lamè constants. Changes to the fluid system are therefore
visited in mechanical equilibrium via the effective stress.

13.1.3 Numerical Solution Scheme

The numerical solution of (13.7) and (13.10) can be obtained with any conve-
nient method. In these benchmarks, we use a standard Galerkin finite element
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spatial discretization with time discretization following a generalized first order
finite difference scheme, as implemented in OpenGeoSys. Note that (13.10) is
an equilibrium equation, and has no time dependency other than that imposed
by coupling terms to fluid behavior. The result is a set of coupled linear equa-
tions in pressure, p, and solid displacement, u. The two equations may be solved
sequentially and iteratively, or monolithically as a single system. We present
results using both solution schemes in the following benchmarks.

13.1.4 Terzaghi Consolidation: Monolithic and Staggered
Approaches

In the HM problem, mechanical compression generates a fluid pressure response,
while pressure storage and dissipation affect the mechanical condition via the
effective stress. Terzaghi has provided the framework to test such a problem.
A cartoon of the problem to be examined is shown in Fig. 13.1. This test is a
necessary, but not fully sufficient condition for correct implementation of a hy-
dromechanical simulator. It guarantees correct implementation of the coupling
relationships between the 1)fluid and 2)mechanical system.
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Figure 13.1: Terzaghi problem. (a) 2-D column (p = 0 initially) stress applied
to top of column which is a free draining boundary. Other bound-
aries are no-flow and roller displacement. Stress may be applied as
a single step-load, or as a function of time. Pressure and displace-
ment are monitored in time at specific locations. (b) Anticipated
(conceptual) pressure profiles within the column with the progres-
sion of time for a step-load of applied stress (in full column, not at
monitoring locations)
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Definition

For a single fluid phase, the analytical solution for pressure dissipation is avail-
able. The analytical solution to this problem has been utilized a number of
times for this very purpose. Beginning from the 1-D fluid diffusion equation of
hydrogeology (simply a fluid mass balance equation),

∂p

∂t
− c

∂2p

∂z2
= 0, (13.11)

where c is 1-D fluid diffusivity. The pore pressure response to a vertical load,
σz, applied linearly over time (σt=0−

z = 0) to the top of the column at a rate,
σ̇z = dσz/dt, is, ([172], (6.50)),

p (z, t)

p0
=

{
1−
(
L− z

L

)2

− 32

π3

[ ∞∑
m=0

(−1)
m

(2m+ 1)3
exp
[−ψ2ct

]
cos [ψ (L− z)]

]}
,

(13.12)

where the total pressure generation is

p0 =
L2

2c
(Bvσ̇z) , (13.13)

for the factor, ψ = (2m+ 1)π/ (2L), the total column length, L, and the loca-
tion in the column (downward from the applied stress), z. The 1-D Skempton
coefficient,

Bv = − δp̄

δσzz

∣∣∣∣
εxx=εyy=ζ=0

=
α

KvSv
, (13.14)

is given purely by micromechanical, poroelastic considerations from the uniaxial
drained bulk modulus, Kv, and the 1-D specific storage, Sv (Table 13.1). The
1-D diffusivity is also a derivative of the 1-D storage:

c =
k

μSv
, (13.15)

and also the permeability, k, and viscosity, μ. See Table 13.1, [173], and [172] for
additional details regarding poroelastic relationships. If utilizing an applied step
load at time t = 0+, we can generate another analytical solution for pressure,
and also displacement. For this validation, we utilize only the linear loading
rate. Because displacement is the primary variable in our FEM formulation,
the displacement must be accurate in order to generate the correct pressure
response: we find no need to reproduce the results of a step load analysis here.

We choose a rather long (50m) column of rock with material properties similar
to those of Berea sandstone (Table 13.2). The column is discretized uniformly
into 50 FEM grid cells. Geometry is shown in Fig. 13.1, which shows a single
column surrounding by displacement roller boundaries allowed to compress from
the top where a loading rate, σ̇z, is applied at time t = 0+. Fluid pressure is
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Table 13.1: Fundamental poroelastic relationships. Many potential combina-
tions are available, these representing only one possibility

Parameter Description Equation

B Skempton coefficient α/[α− φ (1− α) + φK/Kf ]
Ku Undrained bulk modulus K/ (1− αB)
G Shear modulus 3K (1− 2ν) / (2 + 2ν)
νu Undrained Poisson’s ratio (3Ku − 2G)/(6Ku + 2G)
Bv Uniaxial Skempton coefficient B(1 + νu)/(3− 3νu)
Kv Uniaxial bulk modulus 3K(1− ν)/(1 + ν)
Ku
v Uniaxial undrained bulk modulus 3Ku (1− νu)/(1 + νu)

Sv Uniaxial storage α/(KvBv)

Table 13.2: Solid properties

Property Symbol Unit Value

Berea sandstone
Drained bulk modulus K GPa 8.0
Poisson ratio ν − 0.20
Porosity φ − 0.19
Permeability k m2 1.9× 10−13

Biot-Willis coefficient α − 0.8

Westerly granite
Drained bulk modulus K GPa 25.0
Poisson ratio ν − 0.25
Porosity φ − 0.02
Permeability k m2 5.0× 10−15

Biot-Willis coefficient α − 0.6

initially null. Compression of the column leads to a rapid pressure increase and
a subsequent drainage of pressure over time from the top of the column. The
load is applied quickly enough to allow pressure to build with time. The topmost
boundary is free drainage for fluid flow, all others being no-flow (Table 13.3).

Results

Simulations are conducted using both a staggered (fluid and solid equations
solved iteratively) and monolithic (fluid and solid equations solved in a single
matrix) with OpenGeoSys. Results are shown in Fig. 13.2 for two alternate ma-
terial property scenarios: Berea sandstone and Westerly granite. The solution
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Table 13.3: Fluid properties

Property Symbol Unit Value

Bulk modulus Kf GPa 2.27
Density ρ kg/m3 997.05
Viscosity μ Pa×s 8.9008× 10−4
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Figure 13.2: Results of HM coupling

is accurate in all cases. We note a small inaccuracy in the slower loading rate
for sandstone that illustrates the impact of tolerance in the time step control.
Here, we add one extra data set (small dots) with tighter time control, which
shows that tighter accuracy can be achieved with this adjustment.

While the monolithic solution is unconditionally stable for an implicit time-
stepping scheme, the staggered solution suffers limitations. When the fluid
becomes highly incompressible relative to the solid, the solution will diverge.
We provide the general criterion that stability is achieved with Bv < 0.5. This
criterion is generally independent of loading rate. The implications of this are
important, such that for Westerly granite if incompressible grains are used the
solution is unstable at 25◦C for the properties of Table 13.2. Stability can be
enforced by increasing the value of porosity that is used, or decreasing α, or
with any adjustment that brings Bv above 0.5. The staggered solution is stable
for all realistic cases (everything compressible) we have tried. For very sharply
applied loads such as a step load applied at t = 0+, however, the staggered
solution will become unstable even with this criterion. It is important for a
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given problem and set of solid/fluid properties to examine stability with the
above benchmark before extending to the full system.

Time steps are adaptively controlled with a tolerance based on the rate of pres-
sure change over a time step. Such a scheme is capable of ensuring accuracy in
HM or H2M problems. Note the importance of the tolerance in Fig. 13.2.

13.1.5 Distributed Footing: Poroelastic Cube (3D)

We consider a vertical cross-section through homogeneous soil. Due to symme-
try we can limit the investigation to half of the domain. The model domain
is then extending 8 meters in length and 5 meters in height. The problem is
solved in 2D and 3D space, respectively.

Definition

A strip loading is imposed (σyy = σ0 in x ∈ [0, 1]), with zero stresses (σyy =
σxy = 0 in x ∈ (1, 8]) and zero pressure at the top; no horizontal flux, no
horizontal displacements and zero shear stresses at left and right boundaries
with no vertical flux and no displacement at the bottom (Fig. 13.3).

Results

The 3D geometry expands the 2D domain by extruding the 2D shape by 1m
in the off-plane direction (Fig. 13.4). Results at the critical step, i.e., the first
step, are shown in Figs. 13.5–13.7. The results produced using the 2D model
with triangular elements and the 3D model with tetrahedral elements match
each other well, thus providing confidence in higher dimensions.

13.1.6 Distributed Footing: Poroelastic Cube (3D) with
Dynamic Consolidation

Considering the same problem design as the previous section, the mechanical
calculation is now extended to allow for time-dependent deformation. In other
words, solid displacements are no longer solved to equilibrium, so that solid
velocity may be non-zero following the solution of the mechanical system.

Definition

All stresses and pressure are zero at the beginning of deformation. Strip loading
(σyy = σ0 in x ∈ [0, 1]), zero stresses (σyy = σxy = 0 in x ∈ (1, 8]) and zero
pressure at the top; no horizontal flux, no horizontal displacements and zero
shear stresses at left and right hand sides; no vertical flux and no displacements
at bottom (Fig. 13.3).

Material parameters are given in Table 13.4.
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Figure 13.3: Conceptualization of the footing problem. Properties are Young’s
modulus, E = 3×104 N/m2, Poisson’s ratio, ν = 0.2, permeability,
k = 10−10 m2, and fluid viscosity, μ = 10−3 Pa s

Figure 13.4: Mesh geometry

Results

Time duration is ten time steps. The following figures, Figs. 13.8–13.11 show
the distribution of state variables within the domain after 10 time steps. Such
distribution is similar to the static case illustrated in Fig. 13.6.



www.manaraa.com

278 CHAPTER 13 CONSOLIDATION (HnM) PROCESSES

5
0

100

200

300

400

500

600

700
2D

3D

P
re

ss
ur

e 
[P

a]

Depth [m]
0 1 2 3 4 0 1 2 3 4 5

-900

-800

-700

-600

-500

-400

-300

-200

-100

3D

2D

V
er

tic
al

 s
tr

es
s 

[P
a]

Depth [m]

Figure 13.5: Comparison along symmetric axis

PRESSURE1
600
550
500
450
400
350
300
250
200
150
100
50

STRESS_YY
0
-100
-200
-300
-400
-500
-600
-700
-800
-900
-1000

Figure 13.6: 2D contours

Table 13.4: Material properties of dynamic consolidation problem

Property Value Unit

Young’s modulus 3× 104 N/m2

Poisson’s ratio 0.2, 0.4 −
Permeability 10−10 m2

Fluid viscosity 10−3 Pa s
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Figure 13.10: Displacement, its rate and acceleration: vertical component
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13.2 Unsaturated (Richards) Consolidation

13.2.1 Fluid Mass and Momentum Balance

The general fluid mass balance equation for a multi-phase fluid system is simply
an extension of (13.1),

∂

∂t
(φSαρ) +

∂

∂xi
(φSαρvi) = Q (13.16)

where Sα is saturation of fluid α and Q is the source term. We are interested in
a Richards type model for the evolution of fluid pressure under the assumption
that the gas phase is immobile, i.e. vgi = 0. Assuming incompressible grains,
α = 0, and expanding terms as in the single phase case, we obtain the following
Richards equation for an unsaturated deformable porous medium,

(
Sw

φ

Kw

dpw
dt

− φρw
dSnw
dpc

)
dpw
dt

+∇ ·
{
kkrw
μw

(−∇pw + ρwg)

}
+

Swρw∇ · du
dt

= Q. (13.17)
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A constitutive equation, the water content function obtained by experiments,
characterizes the relationship between pc and Sw, and therefore the derivative
dSw/dpc.

13.2.2 Solid Momentum Balance

The deformation process is described in the same manner as for the single phase
case, but now fluid pressure acting on the grains is also dependent on the liquid
saturation,

∇ · (σ − SwpwI) + ρg = 0 (13.18)

13.2.3 FEM Solution Scheme

The standard Galerkin finite element approach is applied for the numerical
solution of the PDEs (13.17) and (13.18) resulting into the following system of
algebraic equations, here solved as a monolithic system,

[
Cpp Cpu

0 0

]
d

dt

{
pw

u

}
+

[
Kpp 0
Kup Kuu

]{
pw

u

}
=

{
rp
ru

}

(13.19)

13.2.4 Terzaghi Consolidation: Unsaturated

Definition

This example follows the general form of the Terzaghi consolidation used pre-
viously. Boundary conditions and model design follows roughly the experiment
of Liakopoulos [165]. The physical experiment of Liakopoulos was conducted in
a column packed with so-called Del Monte sand. Moisture content and tension
at several points along the column were measured with tensiometers.

In the simulation, the column has a size of 0.1m × 1m and is discretized into
20 quadrilateral elements (Fig. 13.12). Initial pressure is zero everywhere in
the domain. Boundary conditions for both fluid and displacement fields are
depicted in Fig. 13.12. Such initial and boundary conditions imply that the
sample in fully saturated at the beginning, the water is allowed to flow out from
the bottom boundary.

The capillary pressure, pc(S), function we use is,

pc =

(
1− S

1.9722
× 1011

) 1
2.4279

, (13.20)
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σxy = 0

ux = 0

∂p/∂n = 0

σxy = 0

ux = 0

∂p/∂n = 0

p = 0, ux = 0, uy = 0

∂p/∂n = 0, σyy = 0, σxy = 0

Figure 13.12: Boundary conditions

Table 13.5: Material parameters

Property Value Unit

Young’s modulus, E MPa 1.3
Poisson’s ratio, ν – 0.4
Solid grain density, ρs kgm−3 2000
Liquid density, ρw kgm−3 kgm−3

Porosity, φ – 0.2975
Permeability, k m2 4.5× 10−13

Water viscosity, μw Pa s 10−3

along with the relative permeability, kr(S), relationship,

kr = 1− 2.207(1− S)1.0121 (13.21)

fit the measured data for saturations larger than 0.84. The physical parameter
are given in Table 13.5.
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Figure 13.13: Simulated results without gravity force

Results

We conduct two kinds of simulations: one including the gravity force as a load
for the mechanical displacement field, and the other ignoring gravity. For the
case of non-gravity, Fig. 13.13 shows the history profiles of water pressure p,
water saturation S, vertical solid displacement uy and vertical stress σyy .

Vertical profiles of results obtained by taking into account the gravity force are
shown in Fig. 13.14. If one compares the saturation result with that obtained
by ignoring the gravity force, one can easily see that the desaturation procedure
is enhanced by the presence of solid gravity acting on the solid displacement
field. This highlights the impact of displacement on water pressure and coupling
effects between the two equation systems.

13.2.5 DECOVALEX Unsaturated Test Case

DECOVALEX is an international code comparison project for the verification of
thermo-hydro-mechanical (THM) and thermo-hydro-chemical (THC) numerical
simulators [174].
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Figure 13.14: Simulated results with gravity force

Definition

The original DECOVALEX-THM benchmark definition is a 2-D problem [174].
For the comparison of different HM swelling models, we consider a simplified case
representing a horizontal cross-section through the 2-D domain. Examined here
is the isothermal HM consolidation problem with unsaturated flow (Fig. 13.15).

The simplified model takes a rectangle shape. The mesh of the domain to-
gether with material types are shown in Fig. 13.16. Figure 13.17 illustrates the
definition of initial and boundary conditions for the horizontal cross-section.
Observation points are set at x = 0.45m, x = 1.10m to record temporal break-
through curves. Material parameters for the rock mass and bentonite are given
in Table 13.6.

The dependency of capillary pressure and relative permeability on liquid satu-
ration for both rock and bentonite are depicted in Fig. 13.18.
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Figure 13.15: 2D DECOVALEX HM definition and simplification for the bench-
mark exercise BME1H

Figure 13.16: Mesh of the simplified BME1H model including canister, ben-
tonite, and rock mass sections

uy=0,σxy=0

uy=0,σxy = 0

ux = 0, σxy = 0

pl = 106Pa

ux=0

σxy=0

S0=0.65

(pl = −7 × 107Pa) pl = 105Pa

Figure 13.17: Simplified horizontal cross-section model

Results

Figure 13.19 displays a contour plot of saturation and vertical swelling stress
in the domain. Swelling stress in the bentonite is clearly induced by change of
water saturation. Figure 13.20 shows the simulated horizontal profiles (top) and
temporal evolutions at the observation point (bottom) of water saturation and
swelling stress based on the linear swelling model proposed by Rutqvist (2005)
[175], which defines the increment of swelling stress to be proportional to liquid
saturation increment,

Δσsw = βΔSw , (13.22)
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Table 13.6: Solid properties of different materials

Parameter Unit Value
Rock mass properties
Density kg/m3 2,700
Young’s modulus GPa 35
Poisson ratio − 0.3
Porosity − 0.01
Saturated permeability m2 1.0× 10−17

Bentonite properties
Density kg/m3 1,600
Young’s modulus MPa 317
Poisson ratio − 0.35
Saturated permeability m2 2.0× 10−21
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Figure 13.18: Capillary pressure and relative permeability functions

where β is a swelling coefficient that could be called the maximum swelling
stress. As the saturation change approaches unity, swelling stress approaches β.

Figure 13.20 shows the simulated horizontal profiles and temporal evolutions at
the observation point of water saturation and swelling stress based on the linear
swelling model proposed by Rutqvist (2005) [175].

13.3 Two-Phase Consolidation

For the two-phase system the governing equations presented in the previous
sections must be expanded slightly.
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Figure 13.20: Horizontal profile (top) and temporal evolution at observation
point (bottom) of water saturation and swelling stress

13.3.1 Fluid Mass and Momentum Balance

Following the same mass balance procedure as for the single phase case, and
gathering two mass balance equations, one for a wetting fluid (i.e. liquid) and
one for a non-wetting (i.e. gas) fluid, we write,

Sw

(
φ

Kw
+
α− φ

Ks

)
dpw
dt

− φ
dSnw
dt

+ ...

∇ ·
{
kkrw
μw

(−∇pw + ρwg)

}
+ αSw∇ · ∂u

∂t
= 0

(13.23)

for mass balance of the wetting fluid, subscript w, and,
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Snw

(
φ

Knw
+
α− φ

Ks

)
dpw
dt

+ φ

(
1− Snw

Knw

∂pc
∂Sw

)
dSnw
dt

+ ...

∇ ·
{
kkrnw
μnw

(
−∇pw − ∂pc

∂Sw
∇Snw + ρnwg

)}
+ αSnw∇ · ∂u

∂t
= 0

(13.24)

for mass balance of the non-wetting fluid, subscript nw. In these equations, krα
is relative permeability of phase α, ρα is density of phase α, and we have chosen
wetting pressure, pw, and non-wetting saturation, Snw, as primary variables
in the solution scheme. Other primary variables, such as capillary pressure,
pc, and non-wetting pressure, pnw, could also have been chosen with algebraic
manipulation, but our benchmark example requires constant, pc = 0, capillary
pressure for comparison with an anylitical solution. This is not possible, of
course, if pc is a primary variable. Any viable permeability saturation function
may be chosen for the example; we use the Brooks–Corey function.

For the numerical solution, storage due to two different fluids with two different
compressibilities and densities is handled implicitly with solution of the above
equations. For the analytical solution, we must define an effective compressibil-
ity as a function of fluid saturation and properties of each fluid. For immiscible
fluids without penetrating bubbles, two compressible materials behave as resis-
tors in series with respect to bulk modulus, thus the effective modulus is

1

Kf
=
Sw
Kw

+
Snw
Knw

. (13.25)

13.3.2 Solid Momentum Balance

As with the single phase case, balance of linear momentum is defined by,

∂σij
∂xj

+ Fi = 0, (13.26)

but now the body force is a function of two fluids, F = ρmg for the mixture den-
sity ρm = φ(Swρw+Snwρnw)+(1−φ)ρs, and insertion of the elastic consitutive
law yields for solid displacement,

∂

∂xj

[
G
∂ui
∂xj

+ (λ+G)
∂uj
∂xi

− αp̄δij

]
+ Fi = 0, (13.27)

where mean fluid pressure is defined as p̄ = Swpw + Snwpnw.
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13.3.3 FEM Solution Scheme

For the two-phase simulations, the two fluid balance equations are solved in a
single global equation, with an iterative coupling to the solid balance equation.

13.3.4 Terzaghi Consolidation: Two-Phase

Definition

For this comparison, we may utilize the same analytical solution as was done
for the single phase case in the previous section, although the solution must
represent the mean fluid pressure p̄ = Swpw+Snwpnw, for the final relationship,

p̄ (z, t)

p̄0
=

{
1.0−

(
L− z

L

)2

− 32

π3

[ ∞∑
m=0

(−1)m

(2m+ 1)
3 exp

[−ψ2ct
]
cos [ψ (L−z)]

]}
,

(13.28)
with pressure generation defined in the same manner,

p̄0 =
L2

2c
(Bvσ̇z) , (13.29)

but where the uniaxial Skempton coefficient, Bv, must be defined (see Ta-
ble 13.1) based upon the effective fluid modulus. Fluid properties are then
defined for two separate fluids (Table 13.7)

Table 13.7: Two-phase fluid properties

Property Symbol Unit Value

Wetting fluid properties
Bulk modulus Kw GPa 2.933
Density ρw kg/m3 997.05
Viscosity μw Pa·s 8.9008× 10−4

Saturation Sw − 0.8

Non-wetting fluid properties
Bulk modulus Knw GPa 1.187
Density ρnw kg/m3 997.05
Viscosity μnw Pa·s 8.9008× 10−4

Saturation Snw − 0.2
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Results

Initially the column is at zero pressure and is saturated uniformly with both
fluids (Sw = 0.8) and we apply pc = 0 and krw = krnw = 0.5. Note that we
utilize a different compressibility for each fluid in order to exercise both fluid
balance equations, with the analytical solution obtained using the effective fluid
modulus, and with the effective modulus having an identical value to the single
fluid modulus, 2.27GPa, used above in the single phase case.

Results are shown in Figs. 13.21 and 13.22 for sandstone and granite (see Ta-
ble 13.2) for incompressible and compressible grains. With reference to the
staggered stability criterion discussed in the HM problem above, because we are
examining incompressible grains here the solution becomes unstable for granite.
Therefore, an alternate value of porosity (0.06) is utilized (in the granite simula-
tions) to ensure stability, which results in Bv < 0.5. Such an adjustment is not
required when compressible (real) grains are used, but is utilized none-the-less
for comparison with the incompressible grain solution. All results are ideally
accurate.

Time steps are adaptively controlled with a tolerance based on the rate of pres-
sure change over a time step. Such a scheme is capable of ensuring accuracy in
HM or H2M problems. Note the importance of the tolerance in Fig. 13.2.

13.3.5 Invarient Stress: Flow and Storage in a
Compressible Medium

It is also possible, and sometimes useful, to test two-phase storage and pressure
dissipation in a deformable media at invarient stress. This test guarantees ac-
curate implementation of fluid storage within the mass matrix (time derivative
term) of the fluid mass balance PDE.

Definition

We utilize the same problem as above, but now no stress is applied and no
mechanical equilibrium performed. The analytical solution may be derived from
the Carslaw and Jaeger [176] solution for heat dissipation within a solid slab,

p̄ (z, t) =
4p0
π

∞∑
m=0

{
1

2m+ 1
sin

[
z

(
(2m+ 1)π

2L

)]
exp

[
−ct
(
(2m+ 1)π

2L

)2
]}

,

(13.30)
where p̄0 is initial mean pressure within the column.



www.manaraa.com

13.3 TWO-PHASE CONSOLIDATION 291

2.5

2.0

1.5

1.0

0.5

0.0
0 200 400 600 800 1000

P
re

ss
ur

e 
[M

P
a]

P
re

ss
ur

e 
[M

P
a]

P
re

ss
ur

e 
[M

P
a]

P
re

ss
ur

e 
[M

P
a]

Time [sec]

Sandstone
dσ/dt = 0.01 MPa/s
σf = 10 MPa
α = 1.0

Sandstone
dσ/dt = 0.001 MPa/s
σf = 10 MPa
α = 0.8

Sandstone
dσ/dt = 0.001 MPa/s
σf = 10 MPa
α = 1.0

Sandstone
dσ/dt = 0.01 MPa/s
σf = 10 MPa
α = 0.8

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0 1000 2000 3000 4000 5000

Time [sec]

2.0

1.6

1.2

0.8

0.4

0.0
0 200 400 600 800 1000

Time [sec]

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0 1000 2000 3000 4000 60005000

Time [sec]

Analytical OGS (numerical)

σz(t )

ζ
z

L

z/L = 0.04

z/L = 0.2

z/L = 0.4

z/L = 0.6

z/L = 0.04

z/L = 0.2

z/L = 0.4

z/L = 0.6

z/L = 0.04

z/L = 0.2

z/L = 0.4

z/L = 0.6

z/L = 0.04

z/L = 0.2

z/L = 0.4

z/L = 0.6

Figure 13.21: Sandstone solutions
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Figure 13.22: Granite solutions. Here, a porosity of 0.06 is used to ensure stabil-
ity for the incompressible grain simulations (an adjustment that
is not needed for compressible grains, but is used there also to
maintain consistency)
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Figure 13.23: Two-phase flow with mechanical storage

Results

Results are shown in Fig. 13.23. We note that with an appropriate mixing rule
for storage in the two phase formulation, the result is ideal. Very small values
of time and z can produce inaccuracies; however, this will always be the case,
barring a very small mesh discretization.

13.3.6 Cam-Clay Consolidation with Swelling

As before, (13.23) and (13.24) define the fluid system. In this example, however,
we choose a numerical solution in OpenGeoSys that accomodates pressure vari-
ables in the solution vector. Both equations are therefore algebraically manip-
ulated so that the primary variables to solve for are now the capillary pressure,
pc, and the non-wetting pressure, pnw,

φρw
∂Sw
∂pc

dpc
dt

+ρwSw∇·du
dt

+∇·
[
ρw

kkrw
μw

(−∇pnw +∇pc + ρwg)

]
= Qw (13.31)

− φρnw
∂Sw
∂pc

dpc
dt

+ φ (1− Sw)

(
∂ρnw
∂pnw

dpnw
dt

+
∂ρnw
∂pc

dpc
dt

)
+

(ρwSw + ρnw (1− Sw))∇ · du
dt

+∇ ·
[
ρnw

kkrnw
μnw

(−∇pnw + ρnwg)

]
= Qnw

(13.32)

where in this case we assume that solid grains are incompressible.

As in Sect. 14.2, swelling stress is based on the linear swelling model proposed
by Rutqvist (2005) [175], which defines the increment of swelling stress to be
proportional to liquid saturation increment,

Δσsw = βΔSw, (13.33)
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Figure 13.24: Model set-up with initial and boundary conditions

where β is a swelling coefficient that could be called the maximum swelling
stress. As the saturation change approaches unity, swelling stress approaches β.

Definition

Figure 13.24 shows the axi-symmetric model domain for the confined swelling
test as well as the initial and boundary conditions for the two-phase flow con-
solidation problem with hydraulic and fluid properties given in Table 13.8. The
parameters of the elasto-plastic swelling model are given in Table 13.9 for Cam-
Clay plasticity.

Results

Figure 13.25 shows the temporal evolution of water saturation on the bottom
of the sample between OpenGeoSys and Code-Bright.
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Table 13.8: Hydraulic properties

Meaning Value Unit
Liquid density, ρw 1, 000 kg/m3

Liquid viscosity, μw 10−3 Pa s
Gas density, ρnw Clapeyron equation kg/m3

Gas viscosity, , μnw 1.8× 10−5 Pa s
Intrinsic permeability, k 0.6× 10−20 m2

Porosity, φ 0.4 m3/m3

Media properties for liquid:
Relative permeability Power law krw = S3

e

Residual saturation 0 –
Maximum saturation 1 –
Water retention van Genuchten
Exponential index, m 0.42 –
Air entry pressure, p0 62 MPa

Relative permeability of gas, krnw 5.103× 10−12
[
e(1− Sl)

]4.3
e, void ratio

Table 13.9: Plasticity parameters for the Cam-Clay model

Parameter Value Unit
Slope of the critical state line, M 1.5 –
Virgin compression index, λp 1.5 –
Swelling/recompression index, κ 0.1 –
Initial preconsolidation pressure, pc 8.0 MPa
Initial void ratio, e 0.7 −
Poisson ratio 0.4 –
Initial (s = 0) elastic slope for 1 + e− p, κi0 0.01 –
Initial (σ = 0) elastic slope for 1 + e− s, κs0 0.25 –
Minimum bulk modulus, Kmin 10 MPa
First parameter for κs, αss −0.03 MPa−1

Second parameter for κs, αsp −0.1609 –
Parameter for κi, αi −0.003 MPa−1

Reference mean stress, pref 0.1 MPa
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Figure 13.25: Water saturation evolution at the sample bottom

13.4 Flow and Mechanics in Discrete Fracture-

Matrix Rock Systems

13.4.1 Hydro-Mechanical Response of a Single Fracture
Within a Rock Matrix (2D)

Definition

This example is a fluid injection problem into a single discrete fracture sur-
rounded by an impermeable rock matrix in two-dimensional space and validates
the proposed lower-dimensional interface elements with local enrichments for the
nonlinear, coupled HM problem. The test case is designed to mimic the semi-
analytical similarity solution available in [177], which has been used to verify
numerical codes such as ROCMAS II [178], GEOCRACK [179], and FEHM
[180]. Test parameters are referred to those of [180]. The solution is available
based on the following assumptions:

1. The fluid compressibility is small compared to the compliance of the frac-
ture aperture under normal effective stress. (This is valid for liquid satu-
rated fractures.)
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Figure 13.26: Fluid injection into a discrete fracture-rock matrix system

2. Fluid flow in a fracture is laminar flow between parallel surfaces.

3. Fracture deformation is not hysteretic.

4. The gradient in aperture along the fracture is small. There is no shear
deformation of the fracture or the fracture does not dilate when sheared.

5. Displacements parallel to the fracture are negligible everywhere within the
rock mass.

Figure 13.26 shows a sketch of the calculation model. The major fracture lies
horizontally in the middle of an impermeable rock block. The fracture is sub-
jected to a uniform in-situ stress σyy = 50 MPa normal to the fracture. Initially,
fracture aperture is uniformly b0 = 1.0 ·10−2 mm and fluid pressure is p0 = 11.0
MPa along the fracture. At time t = 0+, fluid is injected at the left-most edge
of the fracture (in the form of constant boundary pressure, p = 11.9 MPa) and
a sudden increase of pressure in the fracture results. The injection pressure in-
duces elastic fracture opening and a subsequent increase of fracture permeability
and storage capacity.

Semi-analytical Solution

Wijesinghe [177] derived the ordinal differential equation with the dimensionless
aperture w. The semi-analytical solution can be obtained by solving the equa-
tion as an initial value problem using the fourth order Runge-Kutta method.
For details, please refer to the original work [177] (Table 13.10).
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Table 13.10: Model parameters

Symbol Parameter Value Unit

Fluid
ρl Density 1000.0 kg · m−3

μ Viscosity 0.001 Pa·s

Porous medium
ρs Density 2716.0 kg ·m−3

Ss Specific storage 1.0 · 10−10 Pa−1

k Permeability 1.0 · 10−21 m2· s−1

φ Porosity 0.1 %
E Young’s modulus 60 GPa
ν Poisson ratio 0.0 −
α Biot constant 1.0 −

Fracture
b0 Initial aperture 1.0 · 10−5 m
Ss Specific storage 0.0 Pa−1

kn Joint normal stiffness 100 GPa· m−1

ks Joint shear stiffness 100 GPa· m−1

α Biot constant 1.0 −

Numerical Solution

Boundary fluid pressure is fixed at t = 0+ to 11.9 MPa at the left and 11 MPa
at the right. Line elements with local enrichment were used to represent the
discrete fracture and quadrilateral elements for surrounding rock matrix. Very
fine vertical discretization is required near the fracture, i.e. Δy=0.001 m. The
time step is selected as 10 s and a Newton–Raphson iteration is utilized to solve
the nonlinear equation.

Results

Simulation results for pressure and fracture aperture are presented in Fig. 13.27
for a lengthwise profile along the fracture. When fluid is injected, the fracture
aperture is instantaneously opened to nearly 1.9 ·10−2 mm at the injection point
(x = 0 m). With time, this fracture opening behavior gradually propagates
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0 5 10 15 20 25

Figure 13.27: Profile along the fracture: pressure (left) and aperture (right)

toward the right-most, low-pressure edge of the fracture. Linear constitutive
laws dictate a linear variation in fracture aperture relative to fluid pressure.
Figure 13.27 shows good agreement between the numerical method and the
semi-analytical solution.
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Chapter 14

Thermomechanics

by Wenjie Xu, Wenqing Wang, Norihiro Watanabe, Jürgen Hesser,
and Stephanie Krug

In this chapter, we consider coupled thermo-mechanical (TM) processes in a
porous medium. For a heat transport problem in any medium, the governing
equation is given by

ρCpT
′ = −∇qT +QT(x, t), x ∈ R

3 (14.1)

where ρ is medium density, Cp(T ) is the specific heat capacity, QT is the heat
source and qT is the heat flux, which takes the form

qT = −Ke∇, T (14.2)

for solid and

qT = −Ke∇T + n

phase∑
γ

(ργCγp )Tv, γ = liquid, gaseous (14.3)

for porous media, considering advective and diffusive fluxes with Ke as the heat
conductivity. For porous media, the specific heat capacity consists of portions
of solid, liquid and gaseous phases as

ρCp =

phase∑
γ

(ργCγp ) (14.4)

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 14, © Springer-Verlag Berlin Heidelberg 2012
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where γ specifies a solid, liquid or gaseous phase. The boundary conditions are
given by

qT · n = qT

Γ
, or T = TΓ, ∀x ∈ ∂Ω (14.5)

and the initial condition reads

T (x, t) = T0(x), ∀x ∈ Ω (14.6)

with n, the normal direction at x ∈ ∂Ω

For the mechanical process, the total strain rate Δε can be decomposed into its
elastic (reversible) and thermal components,

Δε = C(Δεe − α IΔT ) (14.7)

where C is the constitutive tensor, α is the linear thermal expansion coefficient,
I is the identity tensor and ΔT is temperature change. With the generalized
Hook’s law, the total stress with the thermal effect can be expressed as

Δσ = C(Δε− α IΔT ) (14.8)

where σ is the stress tensor. The volume of a solid increases or decreases with
temperature changes and homogeneous bodies expand evenly in each direction
by increasing temperatures. In this case no variation of the stresses occurs. If
the deformation of the solid is prevented, the stresses increase or decrease with
temperature changes. This phenomenon can be easily calculated by analytical
solutions of the Hooke’s linear elastic model. The equations of the mechanical
behaviour base on the Hooke’s law for linear elastic materials are:

εx =
1

E
(σx − ν (σy + σz)) + αΔT (14.9)

εy =
1

E
(σy − ν (σx + σz)) + αΔT (14.10)

εz =
1

E
(σz − ν (σx + σy)) + αΔT (14.11)

where εi, i=x,y,z are strains, σi are stresses, E is Young’s modulus and ν is
Poisson’s ratio.

14.1 Thermoelastic Stress Analysis in
Homogeneous Material (3 D)

14.1.1 Definition

The top and bottom of a solid body that consists of one homogeneous material
are heated. The aim of this calculation is to find out the isotropic state of stress
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Figure 14.1: Calculation area with one material

Table 14.1: Model parameters

Symbol Parameter Value Unit

T0 Initial temperature (before heating) 298 K
T1 Temperature after heating 308 K
ρ Density of the solid 2,200 kgm−3

E Young’s modulus of the solid 25 GPa
ν Poisson ratio 0.27 −
α Linear thermal expansion 6.0×10−6 K−1

c Specific heat capacity 1.0 J kg−1 K−1

λ Thermal conductivity 1.0 Wm−1 K−1

that is reached after the whole solid is heated. Figure 14.1 shows a sketch of the
calculation area assuming a homogeneous solid, a constant temperature in the
whole body at the beginning and a heating of the top and the bottom of the body
at about 10 K. Linear elastic material behaviour, isotropic thermal expansion
and no gravity effect are assumed. The xy-plane is the horizontal plane. The
height of the body is in the z-direction. The dimensions of this 3 D-model are
10 m in all directions. As deformations in the x- and y-directions are suppressed,
the increasing temperature evokes stresses within the solid. The parameters
used for the solid represent the material behaviour of concrete (Table 14.1).

14.1.2 Solution

Analytical Solution

The analytical solution can be derived from the time independent equation
(14.9)–(14.11) with the assumptions of no deformation and an isotropic thermal
expansion:
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Figure 14.2: Mesh for TM coupling homogeneous material 3D model

εi ≡ 0

σx = σy = σz = −αΔTE
1− 2ν

(14.12)

Equation (14.12) provides the stresses after heating the solid and shows an
isotropic state of stress.

Numerical Solution

The dimensions of this 3 D-model are 10 m in all directions. Deformations
perpendicular to the outer surfaces are suppressed. The initial temperature in
the whole area is 298 K. At the top and at the bottom of the model, the thermal
boundary conditions are set with a temperature of 308 K. Thereby the heating
of the solid to about 10 K is simulated. A mesh with 1,000 hexahedral elements
and 1,331 nodes is used for the simulation. The time duration is divided in
384 time steps with a constant time step size of 900 seconds. This means that
heating of the solid within 4 days is simulated. The calculation model is sketched
in Fig. 14.2.

14.1.3 Results

The calculation of temporal development of the stresses in the centre of the
model (at node 665) is presented in Fig. 14.3. The results of the 3 D simulation
show an exact agreement with the analytical solutions.
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Figure 14.3: Temporal stress development in the centre of the calculation model
(node 665)

Figure 14.4: Calculation area with two different materials

14.2 Thermoelastic Stress Analysis in

Composite Materials (3 D)

14.2.1 Definition

If there are two materials with different thermal expansions, the volume changes
of the materials will be uncommon. The material with the higher thermal
expansion expands more than the material with the lower thermal expansion.
If deformations at the outer boundaries are prevented, different states of stress
will occur in these two materials. But the stresses perpendicular to the parting
plane must be equal. The values of the stresses as a result of temperature
changes can also easily be calculated by the Hooke’s linear elastic model. The
aim of this simulation is to specify the stresses at several areas in the solid.
Figure 14.4 shows a sketch of the calculation area. The model parameters are
given in Table 14.2.
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Table 14.2: Model parameters

Symbol Parameter Value Unit

T0 Initial temperature (before heating) 298 K
T1 Temperature after heating 308 K
ρ Density of the solid 2200 kgm−3

E Young’s modulus of the solid 25 GPa
ν Poisson ratio 0.27 −
α1 Linear thermal expansion of material 1 6.0×10−6 K−1

α2 Linear thermal expansion of material 2 1.2×10−5 K−1

c Specific heat capacity 1.0 J kg−1K−1

λ Thermal conductivity 1.0 Wm−1 K−1

14.2.2 Solution

Analytical Solution

The equations of the mechanical behaviour are based on the Hooke’s law for
linear elastic materials (see (14.9)–(14.11)). The analytical solution can be de-
rived from these time independent equations with the assumptions of suppressed
deformations in the y- and z-directions and an isotropic thermal expansion:

εx = εz ≡ 0

Additionally the stresses in the x-direction (perpendicular to the parting plane
between the two materials) must be equal:

σx1 = σx2

where indices denote different materials. Further, the expansion of the one
material leads to a compression of the other material with the same value in the
x-direction:

εx1 = −εx2
With these limiting conditions the analytical solutions are:

εx1 =
1

2
(α1 − α2)ΔT

(
1 + ν

1− ν

)
(14.13)

εx2 = −εx1 = −1

2
(α1 − α2)ΔT

(
1 + ν

1− ν

)
(14.14)

σx1 = σx2 = E
εx2 (1− ν)− α2ΔT (1 + ν)

1− ν − 2ν2
(14.15)

σy1 = σz1 =
νσx1 − α1ΔTE

1− ν
(14.16)

σy2 = σz2 =
νσx2 − α2ΔTE

1− ν
(14.17)
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Equations (14.13)–(14.17) provide the strains and stresses after heating the body
of two materials. The state of stress is anisotropic.

Numerical Solution

The calculation was done with a 3 D model. The xy-plane is the horizontal
plane. The height of the body is in the z-direction. The dimensions of this
3 D model are 10 m in all directions. The model includes 1,000 hexahedral
elements and 1331 nodes. Deformations perpendicular to the outer surfaces are
suppressed. The initial temperature in the whole area is 298 K. At the top
and at the bottom of the model, thermal boundary conditions are set with a
temperature of 308 Kthereby the heating of the body to about 10 K is simulated.
The parameters used for the solids represent the material behaviour of concrete.
The calculation is divided in 1000 time steps with a constant time step length
of 0.5 seconds. A sketch of the calculation model is shown in Fig. 14.5.

14.2.3 Results

With the analytical solution in (14.13)–(14.17) and the used parameters, the
values of the strains in the x-direction at the parting plane amount to

εx1 = −5.219178× 10−5

εx2 = 5.219178× 10−5

Figure 14.5: Mesh for TM coupling 3D model with 2 materials



www.manaraa.com

306 CHAPTER 14 THERMOMECHANICS

Figure 14.6: Temporal stress development in node 616

Figure 14.7: Temporal stress development in node 720

The values of the stresses are

σx1 = σx2 = −4891304.34Pa = −4.8913MPa

σy1 = σz1 = −3863907.08Pa = −3.8639MPa

σy2 = σz2 = −5918701.60Pa = −5.9187MPa

This anisotropic state of stress is reached after the whole body is heated. The
temporal stress developments in several nodes calculated with both RockFlow
and OGS are presented in Figs. 14.6 and 14.7. The results of the 3D simulation
show an exact agreement with the analytical solutions.
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14.3 Thermoelastic Deformation in a Hollow

Cylinder

14.3.1 Definition

A hollow cylinder which consists of a solid of a constant temperature is exposed
to a higher temperature at the surface of its hole. As a result of the increased
temperature, the cylinder expands. The aim of this calculation is to get out
the radial displacement, as well as the temperature distribution, that is caused
by the thermal expansion process, through the use of an axisymmetric model.
Figure 14.8 shows a sketch of the calculation area assuming a homogeneous solid,
a constant temperature in the whole body at the beginning and a heating of the
cylinder at the inner surface. Linear elastic material behaviour and isotropic
thermal expansion are assumed. Deformations in the y-direction at the bottom
and the top and in the x-direction at the right border are suppressed. The used
parameters of the solid are listed in Table 14.3.

14.3.2 Solution

Analytical Solution

For the hollow cylinder with the inner radius R1 and the outer radius R2 the fol-
lowing analytical solution for radial displacement ur, stress σr and temperature

Figure 14.8: Calculation area (grey area)
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Table 14.3: Model parameters

Symbol Parameter Value Unit

T0 Initial temperature (before heating) 25 ◦C
q Heat source 30 Wm−2

ρ Density of the solid 2,000 kgm−3

E Young’s modulus of the solid 2.5 GPa
ν Poisson ratio 0.25 −
α Thermal expansion 4.2×10−5 K−1

λ Thermal conductivity 5.5 Wm−1 K−1

in dependency on the radius was used.

ur =
q R1 β

2ψ κ
r

(
ln r − 1

2

)
+
A0

2
r +

A1

r
(14.18)

σr = ψ

[
−q R1 β

2ψ κ
r

(
ln r +

1

2

)
+
A0

2
− A1

r2

]

+λ

[
−q R1 β

2ψ κ
r

(
ln r − 1

2

)
+
A0

2
+
A1

r2

]

− β

[
R1 q

κ
ln

(
R2

r

)
+ T0

]
(14.19)

T (r) =
R1 q

κ
ln

(
R2

r

)
+ T0 (14.20)

where
ψ = λ + 2G and β = α (3 λ + 2G)

with

λ – Lamé elastic constant

G – shear modulus

α – thermal expansion coefficient

κ – thermal conductivity

A0, A1 – integration constants

At the outer surface of the hollow cylinder (where r = R2) there is no deforma-
tion, that means the displacement uR2 is zero. Therefore (14.18) is set equal to
zero for this boundary and adapted to A0.

A0 = −2A1

R2
2

− 2B

(
ln R2 − 1

2

)
(14.21)
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where

B =
q R1 β

2ψ κ

At the inner surface of the hollow cylinder (where r = R1) no stress is effected
by the expansion because this boundary is phreatic. Therefore (14.19) is set
equal to zero and A1 is calculated by using (14.22).

A1 =
β
(
R1 q
κ ln

(
R2
r

)
+T0

)
+λB

(
lnR1− 1

2

)
+ψB

(
lnR1+

1
2

)−
(
λ+ψ
2

)
2B

(
lnR2− 1

2

)

λ− ψ
R2

1

− λ+ ψ
2 · 2

R2
1

·
(14.22)

After having solved this equation, A1 is used to calculate A0.

Numerical Solution

The axisymmetric model is in the xy-plane. The inner radius R1 of the cylindri-
cal model is 4.5 m and the outer radius R2 is 50 m. The cylinder is 100 m high.
The initial temperature in the whole area is 25◦C. As boundary conditions, de-
formations in the y-direction at the bottom and the top are suppressed, as well
as deformations in the x-direction at the right border. At the right boundary of
the model a thermal boundary condition is set with a constant value of 25◦C.
At the left boundary, a source term for heat flux of q = 30 W/m2 is defined and
thereby the continuous heating of the solid is simulated. The simulation of only
one time step is done. The numerical model consists of 766 triangular elements
and 426 nodes as sketched in Fig. 14.9.

Figure 14.9: Mesh for TM coupling hollow cylinder model (2D axisymmetric)
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Figure 14.10: Temperature distribution over the radius

Figure 14.11: Displacements in radial direction

Figure 14.12: Stresses in radial direction

14.3.3 Results

The results of the analytical equations for stresses, displacements and tempera-
tures are compared to those of the numerical simulation by OGS. With (14.22)
and (14.21) and the used parameters, the integration constants in the analytical
solution are obtained as:

A0 = 5.96× 10−3

A1 = −1.19× 10−1
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Figure 14.10 shows the temperature distribution over the radius of the hollow
cylinder. In Fig. 14.11 displacements in radial direction that are caused by the
thermal expansion are depicted. In addition you can find the induced stresses
in Fig. 14.12. It is clear that with the axisymmetric model, an OGS simulation
generates comprehensible results that meet well the analytic solution.
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Chapter 15

Reactive Transport

by Haibing Shao, Sebastian Bauer, Florian Centler, Georg Kosakowski, Shuang
Jin, and Mingliang Xie

15.1 1D Reactive Transport: Calcite Dissolution
and Precipitation

15.1.1 Definition

In this example, a one-dimensional column that initially contains calcite mineral
is continuously flushed with water that contains magnesium chlorine (Fig. 15.1).
With the movement of the water front, calcite starts to dissolve and dolomite
is formed temporarily.

Media Properties

The media properties of this model are listed in Table 15.1.

For OpenGeoSys-GEMIPM2K calculation, all the possible chemical species need
to be explicitly set up for initial and boundary conditions. In this example, all
concentration values are given in the unit of mol·kg−1 water.

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9 15, © Springer-Verlag Berlin Heidelberg 2012
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0.0 m 0.5 m
0.001M
MgCl2 0.002M Calcite

Figure 15.1: Model domain

Table 15.1: Material properties

Parameter Value Unit
Column length 0.5 m
Effective porosity 0.32 −
Bulk density 1.8× 103 kg ·m−3

Longitudinal dispersivity 0.0067 m
Pore velocity 9.375× 10−6 m·sec−1

Flow rate 3× 10−6 m3· sec−1
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Figure 15.2: Benchmark results from OpenGeoSys-ChemApp, OpenGeoSys-
PHREEQC, and OpenGeoSys-GEMIPM2K

15.1.2 Solution

This model can be simulated by OpenGeoSys-PHREEQC, OpenGeoSys-
ChemApp, and OpenGeoSys-GEMIPM2K. In these benchmarks, we use the
Nagra/PSI database [181], which provides same thermodynamic data for all
three calculations. Figure 15.2 shows the three simulation results. Solid lines are
for OpenGeoSys-PHREEQC, symbols ”+” are for OpenGeoSys-GEMIPM2K,
and triangles are for OpenGeoSys-ChemApp.
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15.2 1D Reactive Transport Simulation

of Cation Exchange Process

15.2.1 Definition

This test example is taken from the PHREEQC User’s Guide [182]. The simu-
lation is made in order to reproduce the transport of solutes by saturated flow
with the influence of cation exchange. The aim of the example is to check the
correctness of the coupling between OpenGeoSys and PHREEQC by comparing
the results of the simulations of both programs. With the calculation model,
the chemical composition of the effluent, from a column containing a cation
exchanger and a sodium-potassium-nitrate-solution, is simulated. This column
is flushed with 3 pore volumes of calcium chloride solution. The 8.2 cm long
column contains a sodium-potassium-nitrate solution that is in equilibrium with
a cation exchanger. For the one-dimensional calculation the calculation area is
simplified as a line. The calculation model includes 82 elements and 83 nodes.
As an initial condition the water head in the whole domain is assigned to 2 m.
The initial state of the solution is given in Table 15.2.

with

pe —redox potential
X —ion exchanger
kgw —kilogram of water.

At the right border of the model the constant head of 2 m is assigned. At the
left border a constant flux of 1.388×10−6 m3·s−1 is defined as the source term.
The concentration of this infiltrating CaCl2-solution, as well as the pH and pe,
are given in Table 15.3.

The soil material is specified by the parameters in Table 15.4. The dispersion of
the transported solutes in this soil is set equal to 2× 10−3 m. The calculation

Table 15.2: Used parameters

Parameter Value Unit
Ca 0 mol ·kgw−1

Cl 0 mol ·kgw−1

K 2.0×10−4 mol ·kgw−1

Na 1.0×10−3 mol ·kgw−1

N(5) 1.2×10−3 mol ·kgw−1

pH 7 –
pe 12.5 –
Na-X 5.493×10−4 mol ·kgw−1

K-X 5.507×10−4 mol ·kgw−1

Ca-X2 0 mol ·kgw−1
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Table 15.3: State of the infiltration solution

Parameter Value Unit
Ca 6.0×10−4 mol ·kgw−1

Cl 1.2×10−3 mol ·kgw−1

pH 7 –
pe 12.5 –

Table 15.4: Soil parameters

Parameter Value Unit
density ρ 2,000 kg· m−3

porosity Φ 0.5 –
permeability K 1.157×10−5 m2

is divided into 480 time steps with a constant time step length of 180 seconds.
That meansthe flow and transport processes in the aquifer within 1 day are
simulated.

This test example aims to validate the coupling of OpenGeoSys and PHREEQC,
merely the comparison between the simulation results of both programs has to
be accomplished.

15.2.2 Solution

The numerical results are shown in Fig. 15.3. The time-dependent concentra-
tions are the values of the compared OpenGeoSys and PHREEQC models at
the end node and end cell, respectively. Within the calculation time of one day
the pore volume of the column model is exchanged three times. As chloride
is a conservative tracer it arrives already after the exchange of about one pore
volume in the effluent. As long as the exchanger contains sodium this compo-
nent is eluted. Sodium is initially present in the column and exchanges with the
incoming calcium. Potassium is released after sodium. When all of the potas-
sium has been released, the concentration of calcium increases to a steady-state
value. As depicted in Fig. 15.3, between the OpenGeoSys and the PHREEQC
simulation results there are no differences.

15.3 1D Reactive Transport: Multispecies
Transport with Serial and Parallel
Reactions

Reaction networks can be classified as serial and/or parallel reaction networks.
In serial reactions, a reactant produces a single product and this product
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Figure 15.3: Effluent concentrations with time of the OpenGeoSys and
PHREEQC simulations

becomes the reactant for the next stage producing reaction. Examples of se-
rial reactions are denitrification, radioactive decay and dechlorination of some
chlorinated solvents. In parallel reactions, the parent reactant undergoes two or
more independent reactions to produce multiple products. In many biogeochem-
ical systems, the reaction networks are the combination of serial and parallel
reactions.

15.3.1 Definition

In scenario 1, sequential reductive dechlorination of chlorinated hydrocarbons
from trichlorobenzene (TCB) to diclorobenzene (DCB) to monochlorobenzene
(MCB) is simulated:

TCB → DCB →MCB (15.1)

In scenario 2, a serial-parallel reaction network as shown in Fig. 15.4 is used
to perform the verification. It can be decomposed into three serial reactions:
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A B

C2

C2

C2

Figure 15.4: An example of serial-parallel reaction network

A → B → C1, A → B → C2, A → B → C3. For all the reactions in this
scenario, first-order irreversible reactions are assumed.

An analytical solution by [183] has been used to verify the numerical results
from OpenGeoSys-BRNS simulation for these two scenarios.

In scenario 1, a sand column of 100 meters in length is flushed constantly with
water containing TCB. The microbial groups in the column then start to convert
TCB to DCB and further to produce MCB. In the OGS-BRNS model, a line of
100 meters with spatial discretization of 2 meters is defined. Water flows from
left to right with a velocity of 20 m/d. The dispersivity is 5 meters. The first
order reaction rates of TCB, DCB and MCB are 0.0013, 0.00024 and 0.00019
1/d respectively. The yield factor from TCB to DCB is 0.81 and from DCB to
MCB is 0.765. The total simulation time is 1.5 days and temporal discretization
of 0.01 day is employed. The initial and boundary conditions are
For x ≥ 0,

CTCB(x, 0) = CDCB(x, 0) = CMCB(x, 0) = 0 (15.2)

For t > 0,
CTCB(0, t) = 10.0 (15.3)

CDCB(0, t) = CMCB(0, t) = 0 (15.4)

CTCB(∞, t) = CDCB(∞, t) = CMCB(∞, t) = 0 (15.5)

Scenario 2 has similar numerical settings but with different parameter values.
The column length is 40 meters with spatial discretization of 1 meter. Water
flow velocity is 0.4 m/d. The dispersivity is 10 meters. The total simulation
time is 40 days with temporal discretization of 0.04 day. The first order reaction
rates and yield factors of the five species are listed in Table 15.5.
For x ≥ 0,

CA(x, 0) = CB(x, 0) = CC1(x, 0) = CC2(x, 0) = CC3(x, 0) (15.6)
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Table 15.5: Values of first order reaction rates and yield factors for scenario 2

Parameter Value Unit

Reaction rate of A 0.2 1 · d−1

Reaction rate of B 0.1 1 · d−1

Reaction rate of C1 0.02 1 · d−1

Reaction rate of C2 0.02 1 · d−1

Reaction rate of C3 0.02 1 · d−1

Yield factor from A to B 0.5 –
Yield factor from B to C1 0.3 –
Yield factor from B to C2 0.2 –
Yield factor from B to C3 0.1 –
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Figure 15.5: Comparison between concentration profiles of TCB, DCB and
MCB calculated by analytical solution and OpenGeoSys-BRNS in
scenario 1

For t > 0,

CA(0, t) = 1.0, (15.7)

CB(0, t) = CC1(0, t) = CC2(0, t) = CC3(0, t) = 0 (15.8)

CA(∞, t) = CB(∞, t) = CC1(∞, t) = CC2(∞, t) = CC3(∞, t) = 0 (15.9)

15.3.2 Solution

The comparison was conducted for the concentration of all the species for sce-
nario 1 and 2. Figure 15.5 shows a very good agreement between analytical and
numerical results for scenario 1. For scenario 2, as we can see from Figs. 15.6
and 15.7, the results obtained from OGS-BRNS also fit well with the analytical
solution.
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Figure 15.6: Comparison between concentration profiles of species A and B cal-
culated by analytical solution and OpenGeoSys-BRNS in scenario 2
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15.4 1D Reactive Transport: Xylene

Degradation with Multiple Monod
Kinetics, Exchange Kinetics

and Biomass Growth

15.4.1 Definition

This benchmark describes the reactive transport of xylene in a homogeneous
aquifer. The main purpose is to document the ongoing reactions, which are xy-
lene degradation under aerobic, sulfate reducing and iron reducing conditions,
considering growth of the respective biomasses. Also included is the rate limited
exchange of iron goethite into bioavailable iron. The aquifer is represented by a
one-dimensional model 50 m in length in the x-direction and 1 m in the y-and z
directions, respectively. The model is discretized by 100 line elements of a con-
stant 0.5 m length in the x direction. With an isotropic hydraulic conductivity K
of 2.13 ×10−3m · s−1, a porosity of 0.24 and a hydraulic gradient I of 1.3×10−4,
the steady state transport velocity va is 0.1 m· d−1. Longitudinal dispersivity
αL is set to 0.25 m, the diffusion coefficient Da is set to 1.0×10−9 m2·s−1.
The physical aquifer parameters are summarized in Table 15.6. The transport
simulation is run for a period of 1000 d with a time step length of 5 d.

The model aquifer has a length of 50 m in the x-direction, 1 m in the y-direction
and 1 m in the z direction. The whole domain is discretized into 100 line
elements with a constant x and y dimension of 1 m. The aquifer is assumed to
have a homogeneous and isotropic hydraulic conductivity. Using a gradient of
1.23 ×10−4 and a porosity of 0.24 produces a steady state transport velocity
of 0.10 m·d−1. Xylene degradation is simulated according to the typical redox
sequence.

Table 15.6: Parameters used for benchmark HC\1d xylene degradation

Parameter Value Unit
porosity Φ = n 0.24 –
matrix volume fraction V OLMAT 0.75 –
biomass volume fraction V OLBIO 0.01 –
hydraulic conductivity K 2.13×10−3 m·s−1

storage coefficient S 0.0 s−1

solid density ρs 2000 kg·m−3

density of water ρw 1000 kg·m−3

viscosity water η 0.001 Pa·s
longitudinal dispersivity αl 0.25 m
component diffusion coefficient D 1.0×10−9 m2· s−1
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15.4.2 Solution

Results of the simulation are shown in Fig. 15.8 for xylene, the electron acceptors
oxygen and sulfate, as well as for the biomass of the aerobic microorganisms,
the sulfate reducers and the iron reducers simulation time steps of 100 days.
For simulation time t < 500 d, one can see the advancing xylene front and a
reduction of xylene concentrations is only visible for later times, when xylene
concentrations reduce to about 90% of the inflow concentration. Also shown is
the increasing consumption of oxygen with time accompanied by the growth of
the aerobic reducers at the inflow (left) end of the model area. After approxi-
mately 800 d, oxygen concentrations in the inflowing groundwater are reduced
to almost zero within the first 20 m of the aquifer. Sulfate reducers initially
decay from their original amount as growth is inhibited throughout the column
by the still high concentrations of oxygen. Once the oxygen is used up, however,
sulfate reducers start to grow downstream of the oxygen reducers and sulfate
concentrations in the groundwater reduce accordingly. The iron reducers decay
from their initial values and start to grow only for late times t > 80 d and
x> 30m, as xylene degradation from iron reduction is inhibited by both oxygen
as well as sulfate, which is still present in concentrations larger than the inhi-
bition concentration for iron reducers. Accordingly, the spatial distribution of
bioavailable iron is still almost uniform throughout the aquifer.

15.5 1D Reactive Transport: Competition of

TCE- and Cis-DCE-Degradation for the
Zero Valent Iron Surface

15.5.1 Definition

This example simulation demonstrates the use of OpenGeoSys for simulation of
multi-species kinetic reactions. The reaction system was set up by D. Schäfer
and published in [184]. Further, it was used for model verification of the newly
implemented and developed kinetic reaction module in OpenGeoSys. The ex-
ample considers flow in a one-dimensional column of 1 m in length, resembling
the thickness of a reactive iron barrier perpendicular to the flow direction. It
involves 19 species and 16 different geochemical reactions, including both first-
order degradation reactions of adsorbed substances and kinetic sorption reac-
tions. Competition for the available sorption sites is also considered here.

The model setup consists of a 1D column with saturated ground water flow at
a Darcy velocity of 5.0× 10−4m· d−1 from left to right. Geochemical species
are added to the inflowing water, and their sorption and degradation behav-
ior is modeled. For a complete description of input parameters see the paper
by Schäfer et al. (2003). Every degradation reaction follows a Langmuir-
Hinshelwood-Hougen-Watson kinetics with a limited number of sites for the
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adsorption and desorption of chlorinated hydrocarbons on the reactive iron sur-
face. Since all the reactive substances involved have to adsorb onto the reactive
iron surface in order to be degraded, a competition for the surface sites occurs.
This competition has been investigated in column studies and the observed con-
centration profiles were simulated with the numerical model TBC [184]. Model
results are compared with those obtained from an older version of OpenGeoSys,
which was compared to the original TBC simulations.

15.5.2 Solution

Results of the simulation are shown in Fig. 15.9, where profiles of the dissolved
species are depicted. TCE and cis-DCE are added to the inflowing water. They
compete for the sorption sites and when sorbed, they degrade according to a first
order degradation reaction. The retardation of the reactive species compared to
the conservative tracer mobile is clearly visible. Also, just downstream of the
concentration decrease of TCE or cis-DCE, the degradation products ethane
and C4-containing molecules increase. These species are again mobile and are
transported with the water, so an instationary behaviour is observed in Fig. 15.9.
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15.6 1D Reactive Transport: Sequential CHC

Degradation with Isotope Fractionation

15.6.1 Reaction Model

When a substrate C is present in the form of light and heavy isotopes Cl and Ch,
and one of the isotopes is preferentially consumed by a microbial population X ,
a kinetic isotope fractionation effect can be observed, i.e. one of the isotopes will
become enriched in the remaining fraction of electron donors relative to its iso-
tope partner. At the same time, the preferentially consumed isotope will become
enriched in the reaction product relative to the more recalcitrant isotope. The
degree of isotope fractionation can be expressed by means of the fractionation
factor α [-], which is a reaction specific constant and relates the isotopic ratio of
the degradation reaction’s product to the isotope ratio of the substrate. Often,
the isotopic enrichment factor ε [-] is used to quantify the isotope effect of a
reaction, which can be related to α for a one step process by

ε = (α− 1) · 1000 (15.10)

According to Van Breukelen et al. [185], the degradation rate of the light carbon
isotope substrate d12CS/dt is given by the overall degradation rate dCS/dt of
substrate CS corrected for the proportion of 12CS to total CS

−d
12CS
dt

=
d12CP
dt

= −dCS
dt

12CS
12CS +13 CS

(15.11)

The degradation rate of the heavy isotope substrate d13CS/dt then is given by

−d
13CS
dt

=
d13CP
dt

= −dCS
dt

13CS
12CS +13 CS

(ε · 10−3 + 1) (15.12)

dCS/dt can be any rate expression, such as first order, Michaelis-Menten or
Monod-kinetics. Based on this concept and using the general formulation of
multiple Monod kinetics of first order growth of a microbial species, X from
consumption of the light isotope substrate 12CS can be expressed by

[
∂X

∂t

]
12CS

= μmaxX

⎡
⎣
nM−1∏
j=1

(
Cj

KM
j + Cj

)
nI∏
j=1

(
KI
j

KI
j + Cj

)⎤
⎦ CtotS
CtotS +KM

CS

12CS
CtotS

(15.13)

where CtotS =12 CS +13 CS and μmax [T−1] is the maximum growth rate of
X with respect to substrate C. Growth of X from consumption of the heavy
isotope substrate 13CS can be expressed accordingly by
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[
∂X

∂t

]
13CS

= μ∗
maxX

⎡
⎣
nM−1∏
j=1

(
Cj

KM
j + Cj

)
nI∏
j=1

(
KI
j

KI
j + Cj

)⎤
⎦ CtotS
CtotS +KM

CS

13CS
CtotS

(15.14)

where μ∗
max = μmax(ε/1000− 1). The resulting degradation rates of 12CS and

13CS accordingly are given by

∂12CS
∂t

= −μmaxXStCS
YCS

⎡
⎣
nM−1∏
j=1

(
Cj

KM
j +Cj

)
nI∏
j=1

(
KI
j

KI
j +Cj

)⎤
⎦ CtotS
CtotS +KM

CS

12CS
CtotS

(15.15)

∂13CS
∂t

= −μ∗
maxX

StCS
YCS

⎡
⎣
nM−1∏
j=1

(
Cj

KM
j +Cj

)
nI∏
j=1

(
KI
j

KI
j +Cj

)⎤
⎦ CtotS
CtotS +KM

CS

13CS
CtotS

(15.16)

where StCS [-] and YCS [-] are the stoichiometric and yield coefficients for sub-
strate CS . Degradation kinetics for the conceptually more simple Michaelis-
Menten, first or zeroth order kinetics may be derived on the basis of (15.13)–
(15.16) assuming a constant microorganism mass and choosing appropriate
values of μmax, μ

∗
max, K

M
CS

, StCS and YCS .

For the simulation of biodegradation with isotope fractionation of a substrate
species CS by multiplicative Monod (or one of the more simplified) kinetics,
heavy and light isotopes of the fractionating substrate, e.g. 12CS and 13CS , must
be defined as two individual species with corresponding transport processes.
Also, two individual degradation reactions must be defined, requiring identical
parameter values for μmax , YCS , and all KM

i , KI
i , and Sti. The isotopic

enrichment factor ε then is used to calculate the modified maximum growth
rate μ∗

max for the more recalcitrant isotope.

15.6.2 Definition

In this benchmark, which is based on a model of [185], sequential degradation of
chlorinated hydrocarbons (CHC) from PCE to the end product ethylene (Eth),
which will not further degrade, is simulated:

PCE → TCE → DCE → V C → Eth (15.17)

A contaminant source located at the upstream model boundary emits a con-
stant concentration of PCE. All degradation reactions follow simple first order
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Table 15.7: Parameters used for benchmark

Parameter Value Unit
porosity Φ = n 0.25 –
matrix volume fraction V OL MAT 0.74 –
biomass volume fraction V OL BIO 0.01 –
hydraulic conductivity K 1.1574×10−4 m ·s−1

flow velocity q 1.1574×10−6 m·s−1

longitudinal dispersivity αl 1.0 m
component diffusion coefficient D 3.0×10−9 m·s−1

Table 15.8: Reaction parameters used for benchmark HC\1d isofrac

CHC species enrichment factor ε [-] first order rate constant λ [s−1]
PCE −5.2 6.366×10−8

TCE −8.5 3.125×10−8

DCE −17.8 2.199×10−8

VC −23.2 1.273×10−8

Eth 0.0 –

kinetics and involve an isotope fractionation effect. The one-dimensional trans-
port model has a length of 876 m and is discretized by 120 finite line elements
of 7.3 m length, respectively. Basic flow and transport model parameters are
summarized in Table 15.7, reaction parameters for the individual species in
Table 15.8.

Each of the mobile hydrocarbon species is defined twice, once for the light iso-
topologue and once for the respective heavy isotopologue. Also, an immobile
microorganism species X is defined, which has an initial unit concentration of
1.0 throughout the model domain. The microorganisms degrade each of the
chlorinated species (i.e. PCE, TCE, DCE and VC). Thus, a total of eight
monod-type growth reactions for X , one for each isotopologue species, must be
defined. Growth of X , however, is inhibited by setting the growth parameter
in the *.krc file to zero in each of the reactions and microorganism decay is not
included in the simulation, i.e. X is constant in time and space. Each reaction
contains only a single Monod term for the respective isotopologue species. To
achieve degradation kinetics of first order in each case, the half saturation con-
centrationsKM

i >> Ci and are hence set to a value of 1.0×1010. As the effective
first order rate constant is given by λi = μmaxi/K

M
i , parameters μmaxi are set

to proportionally high values in the *.krc file, i.e. ten orders of magnitude larger
than indicated in Table 15.8. Also, the yield coefficients Yi for the individual
reactions must be set to 1.0.

Initial concentrations of all species except the microorganisms are 0.0 mol L−1

throughout the model domain. For 12PCE and 13PCE the upgradient boundary
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conditions are constant concentrations of 9.892×10−4 and 1.078×10−4 mol L−1,
respectively. The hydraulic gradient of 0.01 is induced by fixed head boundary
conditions of 10.0 and 9.781 m at the up- and downgradient model boundaries.
The reactive transport simulation is run for a period of 20 years with 200 time
steps of 3153600 s, respectively, and using an explicit-implicit time stepping
scheme (θ = 0.5).

Model results are compared against the one-dimensional Domenico analytical
solution including first order degradation kinetics as well as by comparison of
an equivalent one-dimensional simulation with PHREEQC, which was presented
by Van Breukelen et al. [185].

15.6.3 Solution

Results at the end of the simulation are presented in Figs. 15.10 and 15.11.
In Fig. 15.10, numerical simulation results for the PCE isotopologues in the
form of normalized concentrations C/C0 are compared against results of the
one-dimensional Domenico analytical solution including first order degrada-
tion, in which the first order degradation rate for the heavy PCE isotopologue
λ13PCE = λ12PCE(ε/1000 − 1). Note that for the comparison with the ana-
lytical solution, kinetic reactions are suppressed on the first node of the FE
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mesh (i.e. on the upstream model boundary) in order to correctly represent the
concentration boundary condition of the analytical solution. Concentrations of
the PCE isotopologues match the analytical solution over a concentration range
of more than 10 orders of magnitude. Also the resulting δ13C [permil] isotope
signatures, which were computed by

δ13C =

(
RCi
RRef

− 1

)
1000 (15.18)

where RCi [-] is the isotope ratio 13Ci/
12Ci of species Ci in the simulation,

while RRef [-] is the isotope ratio of the international standard, i.e. in this case
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the Vienna Pee Dee Belemnite (V-PDB; RRef = 0.011237), match results of the
analytical solution precisely, verifying the correctness of the implementation.

In Fig. 15.11 the upper left and right diagrams show simulated concentration
profiles of the individual CHC species versus results obtained by PHREEQC.
Note that for the comparison with the PHREEQC simulation, kinetic reac-
tions are not suppressed on the upstream model boundary. The lower diagram
shows δ13C isotope signatures. While concentrations of 12PCE and 13PCE de-
crease exponentially with distance from the source. At the left hand side model
boundary, isotopologues of TCE, DCE and VC show concentration peaks in
different distances from the source. Eth isotopologues finally accumulate as the
end products of the degradation chain and reach the source concentrations of
12PCE and 13PCE, respectively. Also, while TCE, DCE and VC isotope signa-
tures increase almost linearly with travel distance demonstrating the increasing
enrichment of the heavy isotopologues, the Eth signature approaches the δ13C
of the source, i.e. PCE. For all isotopologue species, concentration profiles and
isotope signatures show an excellent agreement with the PHREEQC simula-
tion, verifying the numerical implementation also for sequential degradation
reactions.

15.7 1D Reactive Transport: Degradation of
Organic Contaminants in a Sand Column

Experiment by Five Bacterial Groups
Forming a Degradation Network

The Biogeochemical Reaction Network Simulator (BRNS, [186, 187]) is coupled
to OpenGeoSys following a sequential non-iterative operator splitting scheme
yielding the reactive transport model OpenGeoSys-BRNS. The technical cou-
pling is sketched in Fig. 15.12.

15.7.1 Definition

An experimental study by von Gunten and Zobrist [188] has been used to val-
idate the reactive transport models TBC [189] and the stand-alone 1D version
of BRNS [190]. Both models could reproduce the experimental data set. Here,
we use the same simulation scenario to validate GeoSysBRNS and compare
simulation results to BRNS results.

In the example referred to as “Scenario 1” in [190], a sand column of 29 cen-
timeters in length is constantly flushed with water containing lactate as an
electron donor, and oxygen, nitrate, and sulfate as terminal electron accep-
tors (TEAs). Manganese and iron oxyhydroxides are bound to the sand ma-
trix in solid phases and act as two additional TEAs. Five distinct microbial
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Executable model

Model description / Input files

brns.dll
is linked to

(Bio−)chemistryDomain & Physics

GeoSys BRNS

GeoSys

is read by automatic library generation

Figure 15.12: The setup of OpenGeoSys-BRNS. The model description is
divided into two parts: the model domain definition, physi-
cal parameters, hydrogeological flow, and discretization param-
eters in OpenGeoSys format, and the description of the coupled
(bio-)chemical reaction processes in BRNS format. The latter
is compiled into a problem specific library that is accessed by
OpenGeoSys at runtime

• phase exchange (matrix, biophase, pore water)
• oxidation of sulfide by Fe(III)
• precipitation and dissolution of calcite and
Fe(II) minerals
• acid-base reactions for carbonates, sulfides,
lactate, propionate, acetate

lactate

propionate

DIC

O2,

fermentation

Mn(IV),

NO3

Fe(III), SO4

Figure 15.13: Modeling organic carbon degradation in a sand column ex-
periment. Coupled abiotic processes considered in the model
(left), and microbial degradation pathways with corresponding
TAEs (right)

groups, which catalyze the reduction of each TEA to sustain their growth, are
considered in the model. The experimental results suggest that lactate is con-
comitantly mineralized into dissolved inorganic carbon (DIC) and fermented
to acetate and proprionate, with the latter being further oxidized into DIC.
In addition to these microbial degradation pathways, reactive species concen-
trations are influenced by a set of abiotic reactions (Fig. 15.13). The com-
plete reaction network of the model consists of 21 mobile and 18 immobile
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Figure 15.14: Comparison of simulation results obtained with BRNS (lines) and
OpenGeoSys-BRNS (symbols): organic species (top) and all five
bacterial groups (bottom) at day 48 using the highest temporal
resolution (Δt=4 s) and two spatial resolutions

reactive species. The dynamics of the system is determined by 24 kinetically
controlled chemical reactions and nine equilibrium reactions describing acid base
dissociations.

The coupling of the BRNS to OpenGeoSys is shown to be correct by comparing
simulation results of OpenGeoSys-BRNS to BRNS results [191].
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Figure 15.15: Comparison of simulation results obtained with BRNS (lines) and
OpenGeoSys-BRNS (symbols): inorganic species at day 48 using
the highest temporal resolution (Δt=4 s) and two spatial resolu-
tions

15.7.2 Solution

We simulate the experiment with OpenGeoSys-BRNS using two spatial reso-
lutions and three different temporal resolutions per spatial setting, ensuring
Courant numbers smaller than 1.0 in all cases. As in previous studies [189, 190],
we choose 48 days as the target time for comparing the results of the cou-
pled model to those obtained with the BRNS model using the same set of
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Figure 15.16: Comparison of simulation results obtained with BRNS (lines) and
OpenGeoSys-BRNS (symbols) at day 48 using two spatial resolu-
tions (top: Δx=3.9mm, bottom: Δx=1.45mm) and different time
step sizes for lactate, proprionate, and acetate

spatio-temporal resolution settings. At this target time, the system is still in
the transient state.

The simulation results of OpenGeoSys-BRNS and BRNS agree very well for all
39 reactive species at the highest spatial and temporal resolution (see selected
species in Figs. 15.14, 15.15). Decreasing the spatial resolution leads to slightly
different results, with the coupled model generally staying closer to the high
resolution results than the stand-alone version of BRNS (Figs. 15.14, 15.15).
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When the time step size is increased, the numerical results of both models di-
verge from the high resolution results (Fig. 15.16). While increasing the time
step from 4 s to 43.2 s does not lead to significant changes for both models
and both spatial resolutions, a noticeable deviation is observed when the time
step size is increased further to 108 s for the high, and to 216 s for the low
spatial resolution. For these larger time step sizes, the results of OpenGeoSys-
BRNS are again generally closer to the high resolution results than the BRNS
solutions. The observed differences can be attributed to the different numerical
schemes used by BRNS (finite differences) and OpenGeoSys-BRNS (finite ele-
ments). Further details of the OpenGeoSys-BRNS and its performance can be
found in [191].

15.8 1D Reactive Transport: Mixing Controlled
Biodegradation (2D)

15.8.1 Definition

For contaminated groundwater, the natural remediation process is usually lim-
ited by the availability of substrates acting as a carbon source for soil bacteria
and the availability of electron acceptors. The transport of these chemical com-
pounds is controlled by the dispersion length of the flow system. Recently,
Cirpka and Valocchi [192] presented an analytical solution (revised in [193];
see also [194]) for the steady state of a two-dimensional scenario dominated by
transversal mixing. This example serves as a first multidimensional benchmark
to validate OpenGeoSys-BRNS. [192] and [193] provide analytical solutions for
double-monod kinetics with first-order biomass decay. OpenGeoSys-BRNS is
also compared to the KinReact module of OpenGeoSys(OpenGeoSys-KRC),
which is able to solve the same problem.

In this scenario, bacterial growth is modeled using double-monod terms for the
substrates. Biomass decays with a constant decay rate d. The overall dynamics
is described by four differential equations, with the dynamics of species A, B,
and C directly linked to the biomass growth r via yield factor Y :

∂Cbio
∂t

=
CA

KA + CA
· CB
KB + CB

· μmax · Cbio
︸ ︷︷ ︸

r

− d · Cbio (15.19)

∂CA
∂t

= − 1

Y
· r (15.20)

∂CB
∂t

= − 1

Y
· r (15.21)

∂CC
∂t

= +
1

Y
· r. (15.22)

The chemical parameters and their values are listed in Table 15.9.
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Table 15.9: Reaction parameters and values

Symbol Parameter Value Unit
KA Monod constant substrate A 8.33× 10−5 mol·L−1

KB Monod constant substrate B 3.13× 10−5 mol·L−1

μmax Maximum growth rate 1.0 d−1

d Biomass death rate 0.1 d−1

Y Yield coefficient 1.0 g·mol−1

1m

0.075m

0.075m

0.05m

5m

0.2mA

B

B

1m

Figure 15.17: The simulation domain. Simulation results are compared using
concentration profiles along a transect at a distance of one meter
from the inflow boundary, indicated by the arrow

Using OpenGeoSys-BRNS, here we simulate the case as a transient state ground-
water flow process coupled with biodegradation. The numerical solutions are
compared to the analytical steady state solutions and against the OpenGeoSys-
KRC simulation.

The model domain is 5 meters long and 20 cm wide (see Fig. 15.17). Ground-
water flows from left to right. Transport velocity is 1 m/d. The transport
parameters are listed in Table 15.10. Two substrates are continuously emit-
ted at the left inflow boundary throughout the simulation period. Substrate A
is centrally injected over a width of 5 cm with a concentration of 3.3 × 10−4

mol/l, while substrate B is emitted at the remaining part of the boundary with
a concentration of 2.5 × 10−4 mol/l. Initially, the concentration in the whole
simulation domain is zero for substrate A, 2.5× 10−4 mol/l for substrate B and
1.0× 10−6 g/l for biomass. Biomass is considered to be immobile.

In the presence of both species A and B, with A representing a generic organic
contaminant acting as a carbon source and B representing a generic electron
acceptor, the biomass grows, and a waste product C is formed.

For the numerical simulation, a grid spacing of 2.5 cm in flow and 0.4 cm
transversal to the flow direction is used. Temporal discretization of 2 min is
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Table 15.10: Transport parameters and values

Parameter Value Unit
va Transport velocity 1.0 m·d−1

Dt Transversal dispersion coefficient 2.5 cm2 · d−1

Dl Longitudinal dispersion coefficient 0.0a cm2 · d−1

aAs a zero value cannot be used in the numerical simulation, the value 2.5 × 102cm2/d was
used instead. When the numerical simulation reaches steady state, this difference can be
neglected

employed. The OpenGeoSys-KRC simulation additionally verifies the function-
ality of three routines, which were implemented to enhance computational effi-
ciency of the numerical simulation:

• The steady state flow field is computed only once (i.e. for the first time
step) during the simulation. For later time steps, the velocities calculated
for the first time step are reused for all transport processes. This modus
is invoked by the flow process keyword

$TIM_TYPE

STEADY.

• Mass matrices for all transported (i.e. mobile) species are computed only
once (i.e. for the first time step), stored and reused for later time steps.
This modus is invoked by mass transport process keyword

$MEMORY_TYPE

1

• Source terms are defined as volumetric fluxes [m3 · s−1]. The flux defined
for a polyline is evenly distributed to all nodes of that polyline. This
modus is invoked for a source term by the keyword

$DIS_TYPE

CONSTANT_GEO 2.31481E-06

where the number represents the volumetric flux assigned to a polyline.

In the OpenGeoSys-KRC simulation, the downgradient model boundary consists
of two polylines with lengths of 0.15 and 0.05 m, respectively. In order to achieve
a transport velocity (setting porosity n = 0.5) of 1 m·d−1 (or 1.15741×10−6

m·s−1) with a given total model cross section of 0.2 m2 (i.e. assuming a unit
width of the model), the volumetric fluxes assigned to the polylines are −8.75130
×10−7 and −2.822945× 10−7 [m3 · s−1], respectively.
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15.8.2 Solution

The concentrations of the conservative tracer (i.e. the mixing ratio X) fit well
with the analytical solution, indicating that the flow field and conservative trans-
port is properly simulated by both models. All of the three routines tested work
correctly in the OpenGeoSys-KRC simulation, which allows a reduction of com-
putation time by approximately 50% for this test example. Also, both numerical
simulations yield the same results for the reactive species. However, some small
discrepancies are found between the numerical and the analytical solutions for
the components A, B, C, and (most obvious) for the biomass concentration (see
Fig. 15.18). This is mainly due to the problem of exactly defining the transitions
between boundary conditions of components A and B on the inflow boundary
of the model: polylines defining inflow concentrations of A and B may not share
nodes and hence the boundary condition polylines are separated by a distance
of one element width (i.e. 0.005 m) which has to be overcome by transverse
dispersion before A nd B may react with each other, while in the analytical
solution A and B are in direct contact right at the model boundary. This prob-
lem and hence differences between numerical and analytical solutions, may be
reduced by a local mesh refinement at the left hand side model boundary.

15.9 2D Reactive Transport Simulation of
COMEDY Clogging Experiment

Clogging is a widely occurring phenomenon in porous media. The change of
pore space structure normally leads to different behaviors of hydraulics. In
such systems, flow and transport of solutes are strongly coupled with chem-
ical reactions, imposing challenges to numerical simulations. The COMEDY
experimental setup [195] was a 2D reactive transport scenario which involves
clogging and perforation of an interface. Numerical models such as CRUNCH
and HYTECH have been applied to simulate it. In this section, simulation
results from OpenGeoSys-GEM are compared against those from other codes.

15.9.1 Definition

Figure 15.19 shows the geometry of the model domain. It is a chamber contain-
ing 3 regions. Two of them (Q1 and Q3) are made of chemically inert quartz and
the central region (Q2) contains the reactant mineral portlandite. Oxalate ions
were injected as a constant flux through Inlet 2, and sodium chloride solutions
were introduced through Inlet 1 (Table 15.12). In Q2, the chemical reaction
between the inlet solution and portlandite leads to the precipitation of calcium
oxalate, as in the following.

C2O
2−
4 + Ca(OH)2 +H2O ⇒ CaC2O4 ·H2O + 2OH− (15.23)
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Figure 15.18: Simulation results for the transversal mixing model, using the ki-
netic approach and the finest temporal and spatial resolution. An-
alytical solution as solid lines, result of the numerical simulations
with OpenGeoSys-BRNS as symbols and of OpenGeoSys-KRC as
dashed lines

The initial and boundary chemical was set up using the GEMS-PSI software
package. It implements a Gibbs energy minimization algorithm in thermody-
namic modeling of equilibrium in heterogeneous aquatic chemical systems. The
oxalate ion was introduced as an independent component in the thermodynamic
database. The reaction (15.23) was also introduced with equivalent logK values
as in [195]. The detailed chemical setup for the different regions are given in
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Figure 15.19: 2D model domain for the COMEDY experiment according to
[195]. The setup is a square (14 cm of edge size). Lines labeled
Line 1 (y = 7.0 cm) and Line 2 (x = 9.5 cm) (respectively node N
(x = 9.5 cm; y = 10.8 cm)) are test lines/node on which specific
profiles will be compared

Table 15.11: Equilibrium amount of independent components and phases for
boundary and initial conditions

Amount of
chemical
species in
aqueous
phase (mol)

Component Q1(=Q3) Q2 I1 I2
C 1.00e-5 5.50e-8 6.20e-8 5.51e-8
Ca 1.00e-5 3.32 4.70e-8 3.00e-8
Cl 1.20e-5 1.71e-12 0.02 4.25e-5
H 33.2 27.7 33.2 33.3
Na 1.71e-10 1.35e-3 0.02 0.8
O 78.3 78.9 78.3 78.4
Oxa 2.00e-8 1.00e-8 2.00e-8 0.40
Si 30.9 30.9 30.9 30.9
Zz 0 0 0 0

Amount of
solid phases
(mol)

Graphite 3.50e-8 3.50e-8 3.50e-8 3.50e-8
Aragonite 1.00e-8 1.00e-8 1.70e-8 1.00e-8
Calcite 1.00e-5 1.00e-8 1.00e-8 1.00e-8
Portlandite 0 3.33 0 0
Calcium Oxalate 1.00e-8 1.00e-8 1.00e-8 1.00e-8
Quartz 30.87 30.87 30.87 30.87
Amorph Silica 0 0 0 0

Equilibrium
state

pH 7 12.5 7 7
Liquid volume (L) 0.3 0.19 0.3 0.3
Total volume (L) 1 1 1 1
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Table 15.12: Model Setup for the inlets

Velocity (m/s) Inlet 1 Inlet 2
x 5.7143e-10 0
y 0 11.429e-10

Table 15.13: Hydraulic parameters of the model domain

Parameters Q1 Q2 Q3
Hydraulic conductivity (m2/s) 1.00e-5 1.64e-6 1.00e-5
Dispersivity (m) 2.00e-2 2.00e-2 2.00e-2
Diffusion coefficient (m2/s) 3.33e-9 3.33e-9 3.33e-9
Tortuosity 1.0 1.58 1.0

Table 15.11. At some points, the system is in an undefined redox state. To avoid
this, a small amount of dissolved O2 was introduced in the initial bulk compo-
sition to keep the system in oxic condition. The value of porosity is obtained
using the ratio VInitial/VTotal.

The chamber is discretized with a finite element mesh of quadrilateral elements
of 3.3 mm size. The domain contains 1,849 nodes and 1,764 elements. A vari-
able time step scheme is used to calculate the maximal time step size, which
influences the accuracy of simulation results. The pressure at the outlet is set
to 1 bar.

The tortuosity is set different for the Q2 region to mimic the initial effective
diffusion coefficient, which is the same (1 × 10−9) for the 3 regions in [195]
(Table 15.13). In this study diffusion and dispersion are assumed isotropic and

D∗ reduces to a scalar form, D∗ = α‖−→U ‖ + D where D is the effective dif-
fusion coefficient. It is assumed that all solutes have the same value. α (m)

is the dispersivity of the porous medium and
−→
U is the Darcy velocity vector.

In this benchmark, advection and diffusion govern the transport process. The
Archie’s diffusion law De = nm · Dp is applied in this model. The dissolu-
tion/precipitation reaction rate rs (mol/s) is defined according to the following
formula,

rs = −Askrate[1− (Qs/K)] (15.24)

where krate is the dissolution and precipitation rate constant (mol ·m2·s−1).
Qs is the ion activity product. K is the equilibrium constant and As is the
specific surface area (m2·mol−1). The values used here are Abulk =
1, 000 m2

solid/m
3
porousmedium, log10KPortlandite = −5 and log10KCaOxa = −5.
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15.9.2 Solution

For the flow part, (Fig. 15.20) shows the Darcy velocities on Line 1, compared
against the results given by HYTEC. The results obtained with OpenGeosys
are in good accordance quantitatively and qualitatively.
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Figure 15.21: Solids volume ratio and porosity evolution on node N (x=0.096m;
y=0.11m)

For the clogging process, porosity evolution profile (Fig. 15.21) calculated by
OpenGeoSys-GEM is compared against those from HYTEC and CRUNCH
[195]. Qualitatively the results are in good accordance. Portlandite dissolves
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and calcium oxalate precipitates. After the calcium oxalate volume fraction
reaches a maximum it dissolves. The porosity follows the opposite evolution of
mineral volume fraction due to the decrease of 33mL per mol of reacted port-
landite. When calcium oxalate starts to dissolve, the porosity increases until it
reaches the maximal value of 0.3, due to an inert quartz background in Q2.

Quantitatively, the results are different in several aspects. One of them is the
evolution of porosity with time. With OpenGeosys, the portlandite dissolves
much faster. It took 20 days in OGS, whereas in CRUNCH and HYTEC the
complete dissolution happens after 60 and 27 days respectively. The calcium
oxalate is completely dissolved after 156 days in the OGS result, and took 60
and 90 days for CRUNCH and HYTEC. The porosity follows the same evolu-
tion in time. The dissolution time of calcium oxalate can be slightly reduced
by increasing its precipitation/dissolution rate. Another difference is that with
HYTEC and CRUNCH, portlandite volume ratios remain approximately con-
stant for the 20 days before dissolving. This difference can be explained by the
fact that water in Q1 and Q3 is not in equilibrium with portlandite. When it
diffuses into Q2, it starts to dissolve portlandite before oxalate ions reach the
node N. Also noticed is, the height of the maximum of calcium oxalate (20% vol.
for Opengeosys, 28.1% vol. for CRUNCH, and 25.5% vol. for Hytec) makes the
obstacle created with the OpenGeosys simulation more permeable. An increase
in the height of the maximum is observed when the precipitation/dissolution
rate of calcium oxalate is increased.
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Appendix A

Software Engineering

by Lars Bilke

The OpenGeoSys software development community is distributed all over the
world and people with different backgrounds are contributing code to a com-
plex software system. The following points have to be addressed for successful
software development:

• Platform independent code

• A single build system

• A version control system

• A collaborative project web site

• Continuous builds and testing

• Providing binaries and documentation for end users

OpenGeoSys should run on a PC as well as on a computing cluster regardless of
the operating system. Therefore the code should not include any platform spe-
cific feature or library. Instead open source and platform independent libraries
like Qt1 for the graphical user interface or VTK2 for visualization algorithms
are used so that developers can simply use the platform or tools they want.

Despite the use of platform independent code and libraries, in the end there must
be platform specific build settings or project files for integrated development
environments like Visual Studio or Eclipse. These are generated by the CMake3

build system which is configured using platform independent configuration files.

1Qt: http://qt.nokia.com/products/
2The Visualization Toolkit: http://www.vtk.org
3CMake: http://www.cmake.org

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9, © Springer-Verlag Berlin Heidelberg 2012
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SOFTWARE ASSURANCE

Reports

Users

COMMUNITYDEVELOPMENT

INFRASTRUCTURE

Figure A.1: Overview of the OpenGeoSys software engineering workflow

Also, CMake enables so-called out of source builds which means that all the
generated files are separated from the source code. This makes it easier to
manage the source code in a version control system.

A source code management and version control system is a definite requirement
for distributed software development. For this purpose Subversion4 is used,
which enables developers to work on separate versions (branches) of the software
and to merge those versions at some point to the official one.

The version control system is integrated into an information and collaboration
website based on a wiki5 system. The wiki is used for collecting information
such as tutorials, application examples and case studies. Discussions take place
in the OpenGeoSys mailing list.6

To improve code stability and to verify code correctness a continuous build and
testing system, based on the Jenkins Continuous Integration Server,7 has been
established. This server is connected to the version control system and does the
following on every code change:

4Subversion: http://subversion.tigris.org/
5TracWiki: http://trac.edgewall.org/wiki/TracWiki
6OGS-Mailinglist: http://groups.google.com/group/ogs6
7Jenkins: http://jenkins-ci.org/
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• Compiles (builds) the code on every supported platform (Linux, Windows,
MacOS)

• Runs a comprehensive test suite of over 120 benchmarks

• Verifies the test results

• Runs software development related metrics on the code (like compiler
warnings, code complexity, static analysis tools)

• Generates source code documentation

• Provides binaries for end users

• Informs developers on errors

These points enhance the software development process considerably. Firstly,
t platform independence is maintained. Additionally, errors in the source code,
and at which time they were introduced, can be tracked down easily. Lastly,
developers gain access to code analysis tools and up-to-date source code docu-
mentation without the need to install it on their own machines.

Figure A.1 shows an overview of the software engineering workflow and con-
cludes this section.
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Appendix B

Data Processing

by Karsten Rink and Thomas Fischer

OpenGeoSys is a program for the simulation of (coupled) thermal, hydrological,
mechanical and chemical processes that contains a large amount of FEM-related
functionality and numerical solvers. It is, however, a command line tool and
therefore not intuitive for first time users. Also, it is difficult to get a feeling
for the data that is utilized by the program and simulation results cannot be
directly verified without the help of other tools.

To address these issues, the OpenGeoSys Data Explorer has been developed as
a graphical user interface (GUI) for OpenGeoSys (see Fig.B.1). This allows
for a 3D visualization of input and output data of process simulations and will
thus convey a better understanding of the data as well as the simulations. As
with the simulation software itself, the Data Explorer is platform independent
due to the use of the open source application framework Qt and is tested under
Windows- and Linux-based operating systems as well as MacOS. It employs
the same basic data structures as the command line tool and thus complements
OpenGeoSys by giving users a way to visually assess their data sets.

An interactive 3D view (see Fig. B.2) often enhances the understanding of data
and makes it easier to discuss certain aspects or problems with other scientists.
In addition to handling the native OpenGeoSys file formats, the Data Explorer
also provides a large number of interfaces for the import of files created by
established geoscientific software products such as the geographic information
system ArcGIS, the groundwater modeling software GMS and, to a certain de-
gree, software used in the mining or petroleum industry such as Petrel or Gocad.
Non-spatial information, such as time series data or borehole stratigraphies, can

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9, © Springer-Verlag Berlin Heidelberg 2012
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Figure B.1: The graphical user interface of the OpenGeoSys Data Explorer

(a) 2D view (b) 3D view

Figure B.2: Example for visualization of multiple data sets. Figure B.2(a) de-
picts geometrical information such as the boundary of the model
region (white), the river network (blue), gauging stations (red) and
boreholes (pink) in addition to a discrete precipitation map where
the blue dots mark high precipitation and the red/orange dots low
precipitation. Figure B.2(b) shows the same scene in 3D (although
without the precipitation). Boreholes can now be seen as 3D struc-
tures. A semi-transparent surface mesh overlaid with land use
classes as been added to the scene
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(a) Information (b) 3D visualization

Figure B.3: Example for visualization of FEM related data. Depicted are a
number of boundary conditions for a FEMMesh along with detailed
information about their properties

be viewed in separate 2D windows. Furthermore, it is possible to import im-
age data in popular formats such as JPEG or PNG. In addition to all these
geoscientific input data formats, it is also possible to visualize FEM-related in-
formation like boundary conditions (see Fig.B.3) and 3D object structures in
the widespread VTK format. In particular, this format is used to store the time
invariant results of process simulations calculated using OpenGeoSys .

The Data Explorer supports users when preparing simulations by allowing them
to see how various data sets complement or interact with each other. When het-
erogeneous data sets from different sources are integrated into a model, it is not
uncommon that inconsistencies between those data sets exist. Typical examples
in the scope of hydrological data include the course of rivers not quite matching
the underlying terrain model, subsurface layers penetrating each other or bore-
holes not starting at ground level but instead above or below the surface. The
reasons for such inconsistencies are manifold and can be attributed to differ-
ent data acquisition methods (such as remote sensing data scanned from orbit
via satellites, borehole logs created manually using core samples, etc.), data
conversion problems or human error. However, if models for the simulation of
processes such as groundwater recharge are based on faulty or conflicting infor-
mation they might produce erroneous or deceptive results. An interactive 3D
view allows the user to assess the quality of the data and detect inconsistencies,
artifacts or missing information.

A number of visualization options are available in the GUI to support users in
this assessment process by allowing the adjustment of a number of visualization
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(a) All elements (b) Zero volume elements

Figure B.4: Visualization of mesh element quality. Blue signifies good quality;
red elements might cause problems during simulation. Figure B.4(b)
depicts a layer containing zero volume elements blended into the
transparent mesh

parameters for each data set. Examples include

• Super elevation of objects

• Adjusting transparency, such that objects occupying the same space can
be evaluated

• Application of user defined color tables (e.g. for borehole information)

• Selection of specific materials or stratigraphic layers (e.g. a specific set of
lines or a certain subsurface layer) while blanking out the rest of the data
set.

• Enlargement of selected features for better visibility

In addition, users can see the underlying data of visualized objects (such as point
coordinates, mesh element information, etc.) in a separate menu and can even
process geometric data to a certain degree (connecting polylines, triangulation
of surfaces, etc.). Furthermore, it is possible to generate parameterized FEM
meshes based on existing geometric data with a desired element density and
optional mesh refinement towards selected features. For existing meshes it is
possible to check the quality of all mesh elements with respect to certain well-
establish criteria such as the ratio of the longest to shortest element edge, equi-
angle skewness or global element area/volume and then analyze the results of
such an analysis directly in the 3D view (see Fig. B.4).

For more information on the topic of evaluation of 3D data sets the interested
reader is referred to [196]. A comprehensive specification of the functionality of
the OpenGeoSys Data Explorer can be found in the OpenGeoSys Data Explorer
User Manual [197].
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GINA OGS

by Herbert Kunz

During the development of the numerical code OpenGeoSys, a programGINA as
a pre- and post-processing tool, was developed by the German Federal Institute
for Geosciences and Natural Resources (BGR). As an OpenGeoSys user, the
development of GINA has continuously matched the requests of applicants. In
the field of deep geological disposal of radioactive waste, coupled THMC process
modelling is vital for planning and evaluation of experiments in the underground
laboratory, for process understanding, and for long-term safety assessment with
the complicated geological and geotechnical geometry (Fig. C.1). With the
help of GINA, time-consuming handling of pre- and post-processing for a FE-
simulation is easy.

The main features of this interactive graphical user interface tool GINA are:

Pre-processing

• Geometrical data for FE meshing The geometrical objects (points, poly-
lines, surfaces and volumes) can be defined using coordinates input and/or
with a mouse, which are the basic objects in the code OpenGeoSys for
mesh generating, definition of initial and boundary conditions, and re-
sults viewing

• Preparing of finite element parameters Necessary parameters and condi-
tions (initial conditions, boundary conditions, and material properties)
can be interactively defined using keyboard and mouse input

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9, © Springer-Verlag Berlin Heidelberg 2012
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Figure C.1: GINA functions and generated mesh of a rock-EDZ-tunnel system

Figure C.2: Finite element mesh for a coupled fracture network and rock mass
model (a) and fracture-borehole system (b)

Mesh Generation

A mesh generator for structured meshes in 2D (quad) and 3D (prism and hexa-
hedral) elements is implemented in GINA. A special feature for the generation
of finite element mesh for a fracture network with surrounding rock mass was
developed in the course of the BGR investigation program for fracture flow at
Grimsel Test Site (Switzerland) (Fig. C.2).

For the unstructured meshes in 2D and 3D, an interface to the open source
software, e.g. GMSH (www.geuz.org/gmsh) for unstructured triangle and quad-
elements and TetGen (http://tetgen.berlios.de) for tetrahedral elements,
is implemented in GINA. With the help of the interface, a high quality mesh of
2D and 3D complex structures can be generated using GMSH and Tetgen based
on the geometrical objects in the code OpenGeoSys.

http://tetgen.berlios.de
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Post-processing

Using the post-processing functions, simulation results from the OpenGeoSys
can be visualized and evaluated during model calculation in the following cases:

• Contour, colour, and isoline plots in the 2D domain

• X/Y—diagram versus time or along a polyline

• Convert to mechanical principle stress from stress field and viewing in
vector form

Data Interface

To interact with other programs GINA has the following import and export
formats:

• Import File Formats: GMSH, TetGen, Tecplot, DXF, ASCII.

• Export File Formats: GMSH, TetGen, JPG, VRML, Excel

Contact Information

For more information, please contact: herbert.kunz@bgr.de
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Geometric Modelling,
Gridding and Visualization

by Björn Zehner

Geometric modelling and 3D visualization are two aspects that are important
for scientific simulation. The first one is a preprocessing step in which a 3D
description of the input model is set up which is later needed for generating the
3D grid on which the simulation is run and for setting the different parameters
on the grid’s cells and the initial and boundary conditions. The latter one is
needed because the output of the simulation is usually a vast amount of numbers.
Visualization (and Virtual Reality) deals with the question of how to represent
these numbers in an intuitive and comprehensible way. Examples of this are
the visualization of tensor fields from geomechanics [198] or of scalar fields with
uncertainty [199].

Figure D.1 shows the overall processing workflow, from data interpretation via
modelling and simulation, to visualization as it is used in the geoscience domain.
As a first step, a 3D model describing the subsurface is constructed from the
field data provided. While this 3D model construction can be done using CAD
software for geotechnical and engineering applications, more complicated and
irregular geological structures require specialized software. One program com-
monly used for this task by many universities, state agencies and oil companies
is GOCAD1 from Paradigm Ltd, while another example is Petrel2 from Schlum-
berger. The next necessary step is the generation of 3D simulation grids from

1GOCAD: http://www.pdgm.com
2Petrel: http://www.slb.com

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9, © Springer-Verlag Berlin Heidelberg 2012
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Figure D.1: Processing workflow from geological interpretation and geometrical
modelling via simulation to visualization

geometrical models. For the purpose of reservoir simulation, hexahedral grids
and finite difference simulation techniques are more common, and the construc-
tion of such grids works well in most modelling packages. However, to represent
complicated 3D geological structures, such as fault systems, unstructured grids
that use tetrahedra are more suitable. In order to generate these grids, the mod-
elling software has to be used to construct a boundary representation of the 3D
model from which the simulation grid can be generated using e.g. TetGen3

(a software that is open source for research purposes). TetGen also recognizes
if the volume is partitioned into subspaces and assigns corresponding identifiers
to the generated tetrahedra. Furthermore, the geometries from the 3D Model
can be used to set the initial and boundary conditions, for example a predefined
flow on all vertices along a line.

After running the simulation, the results need to be visualized. A very com-
prehensive C++ library that provides most of the standard algorithms for vi-
sualizing scientific data is the Visualization Toolkit (VTK)4 [200]. VTK is
pipeline-oriented and provides different filters that each take an input data set,
do some processing (such as isosurface extraction) and forward the result to the
next filter or an object that visualizes it. In this way, complicated pipelines can
be constructed in order to assess the data. VTK also defines its own file for-
mats and the finite element software OpenGeoSys (OGS) can output simulation
results directly in this format. The VTK library can be used to implement a
full visualization application. This has been done, for example, with the OGS
Data Explorer (see chapter on data processing). Additionally, the open source
software Paraview5 is based on VTK and makes most of the filters available
within a graphical user interface.

3TetGen: http://tetgen.berlios.de/
4VTK: http://www.vtk.org
5Paraview: http://www.paraview.org
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Figure D.2: Combined 2D and 3D visualization in the UFZ’s visualization center
as suggested in [201]. The rear screen and the floor are used to
show the 3D model using head-tracked stereoscopic visualization.
On the side screens additional information is shown, such as the
stratigraphic profile of a borehole, graphs or a map on which the
position of the user is indicated and the direction in which he or
she is looking. 2D- and 3D-Views are coupled

If synoptic views are created that visualize simulation results together with
the geometrical model and other data on which this model is based, the display
quickly becomes cluttered and difficult for viewers to grasp spatial interrelation-
ships of the data. Further, simulation results are often discussed in small groups
or presented to stakeholders who are not familiar with the interpretation of the
visualization shown to them and for this reason have problems understanding it.
Stereoscopic visualization on high resolution display walls can help to overcome
these problems as they provide a real 3D impression that is easier for viewers to
understand and is capable of showing much more detail. However, these display
walls are often more complicated to use as they involve several projectors run
by a computer cluster and thus require specialized software. The display at
the UFZ-Helmholtz Centre for Environmental Research,6 for example, uses 13
SXGA+ projectors in a theater-like configuration with a large rear screen, two
side screens and a projection on the floor. It can be used either as an immersive
VR display or as a display where the rear screen and the floor are used in VR
mode, while the side screens show additional 2D information, such as maps, in
order to help the users orient themselves within large-scale regional models or
borehole data and logs (see Fig.D.2). A full description of the system, its design
concept and its use as a visual information system can be found in [201].

To run these types of systems, the open-source scenegraph OpenSG7 [202] is
attractive because it supports the distribution of the scenegraph. A visualization

6Homepage of UFZ’s Visualization Center:http://www.ufz.de/index.php?en=14171
7OpenSG: http://www.opensg.org/
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application runs on the master computer, assembles the scene and reacts to the
user input. The scenegraph itself and the changes made to it are continuously
distributed to the remote computers on which OpenGL is used in order to
render the scene. The scenegraph is relatively well documented and comes with
examples that show various features, for example how to run a display wall with
a computer cluster. The UFZ uses a commercial application, VRED from PI-
VR GmbH8 that is based on OpenSG, to run its visualization center. We have
extended VRED using OpenSG and Nokia’s Qt Toolkit for the graphical user
interface. We also have extended VTK with a vtkOpenSGActor class so that
content that has been created using a VTK pipeline can be easily converted
on the fly into OpenSG format. In this way we have integrated some standard
features, such as isosurface extraction from scalar fields or glyph rendering and
streamline computation for vector fields, into VRED.

As we have seen, the complete workflow and data processing involves several
software packages and libraries, each specialized for a certain step of the work-
flow. For this reason, the data have to be converted between these different
formats and the information distributed across several files that must be viewed
with various software packages. We have experimented with using GOCAD as
a tool for geometric modelling, data exchange with our project partners and
model maintenance. GOCAD provides import and export functionality to dif-
ferent data formats, such as ArcGIS Shape files, and it can be extended using
C++ and a plugin mechanism, so that we can add our own algorithms, exporters
and importers. In contrast to the often applied way of writing data converters
that read data in GOCAD ASCII format and output the desired file type, our
chosen way of extending GOCAD has the advantage of allowing us to make
use of the topological information that GOCAD keeps track of internally but
does not write to the files. Further, we have access to the data that describe
the appearance of the different objects in GOCAD (e.g. line width or colour
of a surface), so that we can very easily create the same visualization using
other formats. In order to provide an easier and more rapid data exchange we
have added some modelling functionality and the necessary interfaces between
GOCAD and Gmsh, TetGen, VTK, OpenSG and our finite element simulation
software OpenGeoSys. In this way we support the processing of the data as is
described in Fig.D.3.

In order to generate the simulation grids, GOCAD provides algorithms that
generate a structured (hexahedral) grid which can be fitted to the geology that
delineates the actual reservoir. However, as mentioned earlier, with regard
to complicated reservoirs a (tetrahedral) mesh would be preferable. For many
geometrical models, one critical step is conversion from the surface- or boundary-
based 3D model to the 3D grid, because this step requires the surface model to

8VRED: www.pi-vr.de
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Figure D.3: Processing pipeline for the data from geometrical modelling through
simulation to visualization

fulfill different constraints. In order to generate tetrahedral grids, the quality of
the triangular meshes must be higher than is normally required for illustration,
communication and discussion purposes. The mesh should consist of triangles
with not too large an aspect ratio (the longest side length divided by the shortest
side length). The lines where one surface intersects another one or is connected
to it, for example at the contact of a stratigraphic layer and a fault, are also
critical. As is shown in Fig.D.4, it is essential that both surfaces share the same
vertices and segments. Additionally, the whole model should be represented by
a boundary representation that has no holes and divides the space into volumes
fully enclosed by surfaces.

There are several ways of generating or remeshing a model such that it can be
used as a boundary representation model. We have extended GOCAD in order
to use two different methods, which is described in more detail in [203, 204].
One is more targeted at constructing complicated fault zones and requires a lot
of individual work. The other is more suitable for the construction of large-scale
regional models. Both of them make use of constrained delaunay triangulation
by using the open source software Gmsh.9

9Gmsh: http://www.geuz.org/gmsh/
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Figure D.4: The same part of a model of two surfaces (green) connected to
a fault (reddish) shown twice. On the left side the three meshes
do not share the segments and points where they are in contact.
Further, some of the triangles have a very poor aspect ratio. Before
a tetrahedralization of this model would be possible it would have
to be remeshed, so that it looks like the image on the right side

In order to generate a complicated fault zone, the contact lines of the different
horizons on the fault need to be constructed. This can be done by extracting
the contact lines from the existing model, using standard GOCAD commands,
or by constructing them from scratch from a series of geological cross sections.
If the points on these lines are very irregularly spaced they should be resam-
pled, using for example, cubic spline interpolation. If the contact lines cross,
the intersection must be calculated and a point inserted on both lines at this
position. Further, the outline of the fault must be constructed. The fault is
now represented by a framework of lines (segments) that must be part of the
fault’s triangulation. To facilitate further processing, the best-fitting plane is
calculated for the framework and the points are projected onto this plane. The
framework is then exported to the software Gmsh and Gmsh’s constrained De-
launay algorithm is used to create a triangulation that contains all the points
and segments of the framework. Subsequently this triangulation is loaded into
GOCAD, the points that were part of the initial framework are transformed
back to their original location and set as control nodes (which means that they
are not allowed to move any more), and the mesh is smoothed using GOCAD’s
standard interpolation algorithm (DSI).

The method used to construct a boundary representation for a large-scale re-
gional model is shown in Fig.D.5 for a small part of the Thuringian basin in
Germany. As a first step, Gmsh is used to generate a triangulation of the whole
region that accepts the different outlines of the stratigraphic units and other
features, such as well locations and rivers, as constraints (a). This triangulation
is then later used in GOCAD as a template for generation of the different hori-
zons. The triangles of the template that are outside the outline of a horizon
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Figure D.5: Construction of a boundary representation for large scale regional
models. See text for explanations

are deleted (b). The vertices on the border of the triangulation are then moved
onto the line that represents the outline of the horizon on the terrain. Ad-
ditionally, they are set as control nodes so that they do not move any more
during subsequent operations. For the other points, different constraints are
set, such as control points against which the surface should converge (step c-d).
Using GOCAD’s iterative standard interpolation algorithm (DSI) a smooth sur-
face is generated (e). Applying the same sequence of operations for the top of
the stratigraphic unit generates a cover as a top that fits exactly over the first
horizon, so that we get a closed volume (f).

A model that has been meshed or remeshed using the aforementioned methods
has a boundary representation that can easily be gridded using open source
gridding software such as TetGen in order to generate a tetrahedral grid. We
have extended GOCAD by adding an exporter for TetGen input files and an
importer for TetGen output files. The output of TetGen is read into GOCAD
as a TSolid where the different subvolumes are represented as different parts.
Another implemented exporter for GOCAD allows us to then write this grid
directly in the format of our finite element simulation software OpenGeoSys.
Further, geometries such as lines, points and surfaces can be exported from
GOCAD in an XML format that is used by OpenGeoSys to define geometries
that are used for setting boundary and initial conditions. In this way GOCAD
can be used as a kind of preprocessor for OpenGeoSys.

The extensions to GOCAD described above have been tested and used within
several projects at the UFZ. As part of the INFLUINS project, which deals with
fluid flow in sedimentary basins, we have constructed a model of the Thuringian
basin that has been partitioned into the stratigraphic units Bunter, Muschel-
kalk and Keuper. The corresponding simulation grid consisted of more than
600,000 tetrahedra and has been exported to OpenGeoSys to perform ground-
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water simulation. Moreover, we have used the exporters to VTK and OpenSG
for subsequent visualization of the model in our visualization center. Within the
CO2MAN project we have used GOCAD to exchange data and the simulation
grid with our project partners and to construct the necessary geometries for
setting the boundary conditions.
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Heat Transport in a Real
Fracture-Matrix System

by Guido Blöcher and Mauro Cacace

As a last example for linear heat transport we introduce an applied case study
for a 3D fracture-matrix system.

Geology

The following problem deals with simulating fluid flow and heat transport in a
three-dimensional heterogeneous faulted geological system.

The model volume consists of two sub-horizontal geological layers, including two
dipping faults (Fig. E.1). The horizontal north-south and east-west extensions
are 200m, resulting in a horizontal model area of 40,000m2. The two geolog-
ical layers are vertically bordered by three curved surfaces. The elevation of
the top, middle and bottom surface is 55± 5m, 0± 7m and −45± 5m, respec-
tively. Therefore, an average thickness of 55m for layer 1 and 45m for layer 2
is established (Table E.1).

Both faults penetrate the two geological layers. Fault 1 has a length of 233 m
and is striking North-East, with dip coordinates of 316.7◦; 80.6◦. Fault 2 has a
length of 184 m and is oriented perpendicular to fault 1, having dip coordinates
of 225◦; 63.2◦ (Table E.1).

O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media, Lecture Notes in Computational Science and Engineering 86,
DOI 10.1007/978-3-642-27177-9, © Springer-Verlag Berlin Heidelberg 2012
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Figure E.1: Sample model consisting of two geological layers cut by a system of
two crossing faults

Table E.1: Geometrical attributes of the geological layers and faults

Property Unit Layer 1 Layer 2
Average thickness t (m) 55 45

Fault 1 Fault 2

Dip direction (◦) 316.7 225
Dip (◦) 80.6 63.2
Length l (m) 233.5 183.8

Initial and Boundary Conditions

During the simulation, a general flow field from South to North is generated.
Dirichlet (or first-type) boundary conditions for pressure are set along the
southern and northern boundaries (Fig. E.2). According to the definition of
hydrostatic pressure, the pressure at the southern border is constant at p(x, y =
−100m, z)= ρgz+1.75× 106 Pa and at the northern border at p(x, y = 100m,
z)= ρgz+1.25 × 106 Pa (Fig. E.2), where ρ [1,000kg/m3], g [9.81 m/s2] and z
denotes the fluid density, gravitational acceleration and height of liquid column,
respectively. An average hydraulic gradient ∇h= 5× 105 Pa/200 m=0.25 from
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Figure E.2: Pressure boundary condition of the sample model

the South to the North is provided. For the remaining domain, a pressure value
of 1.75× 106 Pa is initialized.

To generate an inflow of hot and cold water from the southern border, Dirich-
let boundary conditions for temperature are applied too (Fig. E.3). Along
the southern border, temperature increases from 40◦C to 80◦C, in going from
West to East, resulting in a temperature profile of T (x, y = −100m, z)=
0.2◦C/m∗x+60◦C (Fig. E.3). For the remaining domain, the initial tempera-
ture is set to 60◦C.

Parameters

Table E.2 shows the hydraulic properties of the two geological layers.

To assure a variation of the hydraulic properties, the upper geological layer was
modeled twice as conductive as the lower layer. The permeability k of layer 1
is set to 2× 10−14 m2 and the porosity φ to 0.15. For layer 2 the permeability
k is set to 10−14 m2 and the porosity φ to 0.08. The storage of both layers is
derived from the bulk compressibility β (1/Pa) of the rock and the embedded
fluid. Assuming fissured rocks, the storage is set to 7× 10−10 1/Pa.
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Figure E.3: Temperature boundary conditions of the sample model

Table E.2: Porous medium properties of geological layers

Property Unit Layer 1 Layer 2

Porosity φ (−) 0.15 0.08
Storage β (1/Pa) 7× 10−10 7× 10−10

Permeability k (m2) 2× 10−14 10−14

Table E.3: Medium properties of faults

Property Unit Fault 1 Fault 2

Aperture a (m) 0.05 0.05
Porosity φ (−) 1 1
Storage β (1/Pa) 4.6× 10−10 4.6× 10−10

Permeability k (m2) 10−8 5× 10−9

In Table E.3 the relevant parameters for the system of the two faults are listed.

The permeability of fault 1 is set to 10−8 m and that of fault 2 to 5 × 10−9

m2. The fault transmissivity is defined as the product of the fault permeability
k and aperture a. To ensure a high contrast between fault transmissivity and
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matrix conductivity, the aperture of both faults is set to 0.05 m. To provide
free fluid flow in the faults, a porosity value of 1.0 is chosen. The storage in
the faults is due to the fluid compressibility only and β = 4.6 × 10−10 1/Pa is
assigned.

The simulation time is set to 145 years in order to observe the major changes
characterizing the temperature field.

Results

After approximately one month, a steady state for the pressure and velocity
field is achieved (Fig. E.4).

Due to the fact that the implemented faults do not cut the southern and north-
ern borders of the model, matrix flow is predominant in these areas. Accord-
ingly, the highest pressure gradients are observed at the northern and southern
borders of the model (Fig. E.4a). In proximity to the cutting faults, the iso-
bars (surfaces of constant pressure) are sub-horizontal due to high flow rates
within the faults. Maximum Darcy velocities of v = × 10−4 m/s can be ob-
served inside the faults (Fig. E.4b). Despite low pressure gradients, high flow
rates occur in the fault planes. High values of fluid velocity are the result of
the relative high transmissivity of the faults with respect to the surrounding
domain.

Figure E.4b shows the stationary flow field. As described above, highest flow
velocities can be observed in the fault planes. The applied pressure boundary
conditions force a regional flow field from South to North. The average velocity
at the southern and northern regions is 10−7 m/s, with maximum inflow to the
faults from the South. In the rest of the domain, outflow from the faults into
the rock matrix is pronounced. In the central part of the model, faults act as
the predominant flow paths. In contrast, low velocities (less than 10−8 m/s)
characterize the eastern and western boundaries. An additional important fact
is that at the southern edge of fault 1 and fault 2, backward flow from the North
to the South occurs. Pressure equalisation within the faults results in higher
matrix pressure at this area. This causes drainage of the rock matrix by the
fault system.

Figure E.5a–d shows the 45◦C, 55◦C, 65◦C and 75◦C contours at four different
time stages.

Before stationary field conditions for pressure and velocity are reached, con-
ductive heat transfer does not affect the initial temperature field significantly
(Fig. E.5a). After achieving the stationary pressure and velocity field, convective
heat transfer (advection plus diffusion) becomes predominant. The cold water
front (T = 55◦C) enters fault 1 after approximately 4 months (Fig. E.5b). Due
to the geometry of fault 1 with respect to the southern boundary of the domain,
cold water enters fault 1 in the upper part. After 35 years, (Fig. E.5c) cold water
from fault 1 and hot water from fault 2 are mixed at the fault intersection. The
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Figure E.4: Simulated steady pressure (a) and velocity field (b) achieved after
approximately 1 month
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Figure E.5: Temperature contour plots (45◦C, 55◦C, 65◦C and 75◦C isosurfaces)
at four different time stages

final temperature field (Fig. E.5d) shows an average temperature of T = 55◦C
in the northern part which is less than the mean initial temperature of 60◦C.
The depression from the mean value occurs because fault 1 is more conductive
than fault 2, which drives higher amounts of cold water into the system.

For a detailed observation of the pressure, velocity and temperature evolution
inside the two faults, three observation points were set (Fig. E.6a).

After starting the simulation the pressure increases at all observation points
(Fig. E.6b). As shown for observation point 3 (Fig. E.6c), the initial magnitude
of the velocity is due to vertical flow only. The observed downward flow is
forced by the initial pressure conditions in combination with the chosen pressure
boundary. Therefore, an initial increase of fluid pressure is observed. After 1
month, a stationary pressure and velocity field is reached, as indicated by the
horizontal lines in Fig. E.6b, c.

The vertical component of velocity decreases over time from 3 × 10−2 m/s to
10−8 m/s, and the horizontal flow from South to North with velocities between
10−5 m/s and 10−4 m/s becomes dominant. The cold water reaches the fault
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Figure E.6: Location of three observation points within the fault faces (a);
Simulated pressure (b) and temperature (d) values at these obser-
vation points and simulated velocity components (c) at observation
point 3

system at the edge of fault 1 (Fig. E.6d) after approximately 4 months. After
an additional 17 months, cooling at observation point 3 begins. At the same
time, hot water reaches fault 2 first. Due to the lower transmissivity of fault 2,
the hot water reaches the intersection point after 10 years, and cooling at obser-
vation point 3 stops. Higher amounts of cold water enter the fault intersection
(observation point 3) from the more conductive fault 1, causing temperature to
decrease to 55◦C. This corroborates the observation of the temperature field for
the total domain.

In a second run, the same problem described above has been numerically solved
using the Flux Corrected Transport (FCT). Figure E.7 illustrates the differences
regarding numerical oscillations in solving for the transport field with (dashed
lines) and without (solid lines) FCT method. Figure E.7a, b show the calculated
temperature profiles along the general flow field for two different stages in the
simulation. As shown in Fig.E.7a, the FCT method seems to reduce the ampli-
tudes of numerical oscillations by a maximum factor of three at the beginning
of the simulation.
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Figure E.7: Simulated temperature along two lines at the beginning (a) and
at the final simulation time (b) with and without flux corrected
transport FCT
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in klüftig-porösen medien. Dissertation, Bericht Nr. 65, Institut für
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[184] Ralf Köber Dirk Schäfer and Andreas Dahmke. Competing tce- and cis-
dce-degradation kinetics by zero-valent iron - experimental results and nu-
merical simulation. Journal of Contaminant Hydrology, 65:183–202, 2003.

[185] B.V. Van Breukelen, D. Hunkeler, and F. Volkering. Quantification of
sequential chlorinated ethene degradation by use of a reactive trans-
port model incorporating isotope fractionation. Environ. Sci. Technol.,
39(11):4189–4197, 2005.

[186] D.R. Aguilera, P. Jourabchi, C. Spiteri, and P. Regnier. A knowledge-
based reactive transport approach for the simulation of biogeochemi-
cal dynamics in earth systems. Geochemistry, Geophysics, Geosystems,
6:Q07012, 2005.

[187] P. Regnier, J.P. O’Kane, C.I. Steefel, and J.P. Vanderborght. Modeling
complex multi-component reactive-transport systems: towards a simu-
lation environment based on the concept of a knowledge base. Applied
Mathematical Modelling, 26:913–927, 2002.

[188] Urs von Gunten and Jürg Zobrist. Biogeochemical changes in
groundwater-infiltration systems: Column studies. Geochimica et Cos-
mochimica Acta, 57:3895–3906, 1993.
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